1. Introduction
Apiaceae (syn. Umbelliferae) is one of the largest angiosperm families. It includes 300 genera (3000 species) globally and 100 genera (614 species) in China [1]. Apiaceae plants have been widely used in healthcare, nutrition, the food industry, and other fields [2]. Currently, 55 genera (230 species) of Apiaceae plants have been used as medicinal plants, and over 20 species have been widely used as traditional Chinese medicines (TCMs) [3]. Extensive studies have demonstrated that Apiaceae medicinal plants (AMPs) present a variety of pharmacological properties for the treatment of central nervous system, cardiovascular, and respiratory system diseases, amongst others [1,4]. These pharmacological activities are largely associated with metabolites such as polysaccharides, alkaloids, phenylpropanoids (simple phenylpropanoids and coumarins), flavonoids, and polyene alkynes [1,5,6].
In China, Apiaceae plants have been primarily used as traditional medicines for relaxing tendons, activating blood, relieving superficial wounds, treating colds, etc. [1,2]. For example, rhizomatous and whole plants are mainly used for the treatment of common colds, coughs, asthma, rheumatic arthralgia, ulcers, and pyogenes infections; fruits are mainly used for regulating vital energy, promoting digestion, relieving abdominal pain, and treating parasites [1,2].
The occurrence of bolting and flowering (BF) plays a critical role in the transition from vegetative growth to reproductive development in the plant life cycle [7]. However, BF significantly reduces the accumulation of metabolites in vegetative organs, which ultimately leads to the lignification of rhizomes and/or roots such as sugar beet [8], lettuce [9], and Chinese cabbage [10]. In particular, it common that BF significantly reduces the yield and quality of the rhizomatous AMPs [11]. Extensive studies have demonstrated that BF is regulated by both internal factors (e.g., germplasm resource, seedling size, and plant age) and external factors (e.g., vernalization, photoperiodism, and environmental stresses) [12]. To date, the BF of most rhizomatous AMPs have not been effectively controlled [11,13].
In order to form a comprehensive understanding of the current status of AMPs in China, herein, the progress on traditional use, phytochemistry, BF, and controlling approaches are summarized. This review will provide useful references for the efficient cultivation and quality improvement of AMPs.
2. Materials and Methods
Information on AMPs was attained using scientific databases (i.e., PubMed, Web of Science, Springer, and CNKI), using the following keywords: Apiaceae plant, traditional use, phytochemistry, BF, and lignification. Additional information was collected from ethnobotanical studies that mainly focused on the “Flora of China” and local classical literature, such as “Divine Husbandman’s Classic of the Materia Medica (Shen Nong Ben Cao Jing)”, “Compendium of Materia Medica”, “Illustrated Book on Plants”, “Collection of National Chinese Herbal Medicine”, and “Pharmacopoeia of the People’s Republic of China” (2020). The names of all plants correspond to the database Catalogue of Life China. Chemical structures were drawn using ChemDraw 21.0.0 software.
3. Apiaceae Medicinal Plants (AMPs)
Apiaceae plants have been traditionally used as medicines in China for ca. 2400 years (Figure 1). In 390–278 BC, three Apiaceae plants, including Angelica dahurica, Ligusticum chuanxiong, and Cnidium monnieri, were first recorded as medicines in “Sorrow after Departure” [1,2]. With the progress of Chinese civilization, ca. 100 Apiaceae plants were historically recorded as medicines. Specifically, 12 AMPs (e.g., Angelica decursiva, Bupleurum chinense, and Centella asiatica) were recorded in the known herbal text of China, the “Divine Husbandman’s Classic of the Materia Medica (Shen Nong Ben Cao Jing)” in 1st and 2nd century AD [14]. In 1578 and 1848, 24 and 31 AMPs were respectively recorded in the “Compendium of Materia Medica and Illustrated Book on Plants” [15]. In the 21st century, the number of AMPs has been continually increasing, up to 93 species recorded in the “Flora of China” in 2002 [16], and 96 species in the “Collection of National Chinese Herbal Medicine” in 2014 [17]. In recent years, 22 species were recorded in the “Pharmacopoeia of the People’s Republic of China” [18]. Specifically, 18 species are used with rhizomes and/or roots (Table 1).
4. Classification of AMPs Species
To our best knowledge, a total of 228 AMPs used as TCMs were collected from previously published studies and books (Table 1). Based on the traditionally used medicinal parts, the 228 AMPs were categorized into six classes, including 51 species (21 genera) used with the whole plants (i.e., rhizome and/or root, stem, and leaf), 184 species (44 genera) used with rhizomes and/or roots, 5 species (5 genera) used with stems, 9 species (8 genera) used with leaves, 17 species (14 genera) used with fruits, and 1 species (single genus) used with seeds.
Specifically, the 51 species (21 genera) used with the whole plants include Anethum, Anthriscus, Apium, Bupleurum, Centella, Conium, Coriandrum, Cryptotaenia, Eryngium, Ferula, Foeniculum, Hydrocotyle, Oenanthe, Peucedanum, Pimpinella, Pleurospermum, Pternopetalum, Sanicula, Sium, Spuriopimpinella, and Torilis genera. In particular, Sanicula (e.g., S. astrantiifolia, S. caerulescens, S. chinensis), Hydrocotyle (e.g., H. himalaica, H. hookeri, and H. nepalensis), and Pimpinella (e.g., P. candolleana, P. coriacea, and P. diversifolia) genera plants are usually used as whole plants.
The 184 species (44 genera) used with the rhizomes and/or roots, which make up the majority of AMPs, include Angelica, Anthriscus, Apium, Archangelica, Bupleurum, Carum, Changium, Chuanminshen, Cicuta, Cnidium, Conioselinum, Daucus, Eriocycla, Ferula, Foeniculum, Glehnia, Heracleum, Hymenidium, Kitagawia, Levisticum, Libanotis, Ligusticopsis, Ligusticum, Meeboldia, Nothosmyrnium, Oenanthe, Osmorhiza, Ostericum, Peucedanum, Phlojodicarpus, Physospermopsis, Pimpinella, Pleurospermum, Pternopetalum, Sanicula, Saposhnikovia, Selinum, Semenovia, Seseli, Seselopsis, Spuriopimpinella, Tongoloa, Torilis, and Vicatia genera. Specifically, Angelica (e.g., A. biserrata, A. dahurica, and A. sinensis), Bupleurum (e.g., B. bicaule, B. chinense, and B. scorzonerifolium), and Ligusticum (L. chuanxiong, L. jeholense, and L. sinense) genera plants are usually used as rhizomes and/or roots.
The 5 species (5 genera) used with the stems include Aegopodium (A. alpestre), Coriandrum (C. sativum), Foeniculum (F. vulgare), Ligusticum (L. chuanxiong), and Oenanthe (O. javanica); the 9 species (8 genera) used with the leaves include Aegopodium (A. alpestre), Anethum (A. graveolens), Angelica (A. morii), Anthriscus (A. nemorosa and A. sylvestris), Carum (C. carvi), Daucus (D. carota), Foeniculum (F. vulgare), and Ligusticum (L. chuanxiong); the 17 species (14 genera) used with the fruits include: Ammi (A. majus), Carum (C. buriaticum and C. carvi), Cnidium (C. monnieri), Coriandrum (C. sativum), Cuminum (C. cyminum), Cyclorhiza (C. peucedanifolia), Daucus (D. carota L. and D. carota var. Carota), Pimpinella (P. anisum), Trachyspermum (T. ammi), and Visnaga (V. daucoides) genera; the single genera used with the seeds is Ferula (F. bungeana) (Table 1).
5. Traditional Uses
As is shown in Table 1, distinct traditional uses of the 228 AMPs were recorded. Based on their clinical agents, a total of 79 traditional uses are enriched, with 40 species contributing to the treatment of relieving pain, 36 species to the treatment of dispelling wind; and 21 species to the treatment of eliminating dampness (Figure 2).
Moreover, the AMPs were also widely used as “ethnodrugs” for ethnic minorities in China. For example, Carum carvi was used as Tibetan medicine for the treatment of dispelling wind and eliminating dampness, as well as treating cat fever and joint pain [86]; Trachyspermum ammi [236] was used as Uygur medicine for the treatment of eliminating cold damp, dispelling coldness, and promoting digestion; Angelica acutiloba was used in Korean medicine for the treatment of strengthening the spleen, enriching blood, stopping bleeding, and promoting coronary circulation [237]; Angelica sinensis was used as medicine for the Tujia minority for the treatment of enriching the blood, treating dysmenorrheal, and relaxing the bowel [238]; and Chuanminshen violaceum was used as a geo-authentic medicine of Sichuan province for the treatment of moistening the lungs, treating phlegm, and nourishing the spleen and stomach [89].
Meanwhile, AMPs combined with other herbs have also been applied for thousands of years [239]. For example, the Decoction of Notopterygium for Rheumatism is a famous Chinese prescription and is composed of Notopterygium incisum, Angelica biserrata, Ligusticum sinense, Eryngium foetidum, and Ligusticum chuanxiong, etc.; it has been widely used for the treatment of exopathogenic wind-cold, rheumatism, headache, and pantalgia [94]. The Xinyisan that is composed of Yulania liliiflora, Actaea cimicifuga, Angelica dahurica, Eryngium foetidum, Ligusticum sinense, etc., has been widely used for the treatment of deficiency of pulmonary qi and nasal obstruction due to wind-cold pathogens and damp-heat in the lung channel [94,168]. The Shiquan Dabu Wan of Angelica sinensis that is recorded in the “Pharmacopoeia of the People’s Republic of China” has been mainly used for the treatment of pallor, fatigability, and palpitations [240]. The Juanbi Tang of Notopterygium incisum and Angelica biserrata that is recorded in “Medical Words” (Qing dynasty) has been mainly used for treatment of arthralgia due to wind cold-dampness [121].
6. Modern Pharmacological Uses
Modern pharmacological research on the 228 AMPs is summarized in Table 1. Based on the pharmacological effects, a total of 62 modern uses are identified (Figure 3), with 36 species showing anti-inflammatory activity, 20 species showing antioxidant activity, and 16 species showing antitumor activity. In addition, other modern uses are also identified, such as antitumor, bacteriostatic, and analgesic. These modern pharmaceutical properties have been demonstrated to be associated with bioactive metabolites, and several metabolites have been found to be co-existent in the TCMs [241,242].
Specifically, sesquiterpene-coumarin, such as (3′S, 5′S, 8′R, 9′S, 10′R)-kellerin, gummosin, galbanic acid, and methyl galbanate from Ferula sinkiangensis resin, showed anti-neuroinflammatory effects and might be a potential natural therapeutic agent for Alzheimer’s disease [243]. The supercritical carbon dioxide extracts from Apium graveolens showed antibacterial effects, with the highest inhibitory activity against Bacillus cereus [244,245]. In vitro, the antitumor activity of AMPs have been identified; for example, the ferulin B and C in Ferula ferulaeoides rhizomes could restrain the multiplication of HepG2 stomach cancer cell lines, and 2,3-dihydro-7-hydroxyl-2R*, 3R*-dimethyl-2-[4,8-dimethyl-3(E),7-nonadienyl]-furo [3,2-c] coumarin could restrain the proliferation of HepG2, MCF-7, and C6 cancer cell lines [107,246]. In addition, the osthole in Angelica biserrata could restrain the multiplication of human gastric cancer cell lines MKN-45 and BGC-823, human lung adenocarcinoma cell line A549, human mammary carcinoma cell line MCF-7, and human colon carcinoma cell line LOVO [247]. The antioxidative activity of AMPs has been also identified; for example, the imperatorin, oxypeucedanin hydrate, and bergaptol in Angelica dahurica exhibited DPPH scavenging activity [30], hydromethanolic extracts from Pimpinella anisum exhibited free radical scavenging activity [248], and water-soluble polysaccharides in Chuanminshen violaceum scavenged DPPH, hydroxyl, and superoxide anion radicals [91].
7. Phytochemistry
As is shown in Table 1, hundreds of bioactive metabolites have been identified from the 228 AMPs [1,249]. Based on their chemical structures, these metabolites can be categorized into five main classes: (1) polysaccharides, (2) alkaloids, (3) phenylpropanoids, (4) flavonoids, and (5) terpenoids (Figure 4).
Among the 22 AMPs recorded in the “Pharmacopoeia of the People’s Republic of China” [18], 18 secondary metabolites in the 17 AMPs (e.g., Angelica biserrata, Bupleurum chinense DC., and Centella asiatica) (Figure 5) were described as quality control indicators, which include: 10 phenylpropanoids (i.e., osthole, columbianadin, imperatorin, isoimperatorin, nodakenin, ferulic acid, trans-anethole, notopterol, praeruptorin A, and praeruptorin B), 4 terpenoids (i.e., saikosaponin a, saikosaponin d, asiaticoside, and madecassoside), 2 chromones (i.e., prim-O-glucosylcimifugin and 5-O-methylvisammioside), and 2 phthalides (i.e., ligustilide and levistilide A); a specific quality marker has not been reported for the other 5 AMPs (e.g., Changium smyrnioides, Daucus carota L., and Glehnia littoralis) (Table 2).
7.1. Polysaccharides
Polysaccharides are the largest components of biomass and account for ca. 90% of the carbohydrates in plants [250]. Studies have demonstrated that polysaccharides in medicinal plants are indispensable bioactive compounds, presenting uniquely pharmacological effects such as immunomodulatory, hypoglycemic, antitumor, anti-diabetic, and antioxidant effects, amongst others, with few side effects or adverse drug reactions [251,252]. To date, polysaccharides in the 228 AMPs have also been identified, showing multiple pharmacological effects. For example, polysaccharides in Angelica sinensis present hematopoietic, antitumor, and liver protection effects [239,253]; polysaccharides in Angelica dahurica protect spleen lymphocytes, natural killer cells, and procoagulants [254,255]; and polysaccharides in Bupleurum chinense and Bupleurum smithii present the effect of macrophage modulation, kidney protection, and inflammatory alleviation [256,257,258].
7.2. Alkaloids
About 27,000 alkaloids presenting as water-soluble salts of organic acids, esters, and combined with tannins or sugars have been found in plants [259]. Many alkaloids are valuable medicinal agents that can be utilized to treat various diseases, including malaria, diabetes, cancer, cardiac dysfunction, blood clotting–related diseases, etc. [260,261,262]. Alkaloids in the 228 AMPs mainly exist in the Ligusticum, Apium, Conium, and Cuminum genera [249]. Pharmacological studies have demonstrated that alkaloids in Ligusticum chuanxiong show the activity of inhibiting myocardial fibrosis, protecting ischemic myocardium, and relieving cerebral ischemia-reperfusion injury [151,263,264]. A novel alkaloid 2-pentylpiperidine known as conmaculatin in Conium maculatum shows strong peripheral and central antinociceptive activity [265]. Some alkaloids have been identified to show antidepressant activity, such as berberine in Berberis aristata, strictosidine acid in Psychotria myriantha, and Anonaine in Annona cherimolia; these could be explored as an emerging therapeutic alternative for the treatment of depression.
7.3. Phenylpropanoids
Phenylpropanoids are a large class of secondary metabolites biosynthesized from amino acids, phenylalanine, and tyrosine [266]. Over 8000 aromatic metabolites of the phenylpropanoids have been identified in plants. These include simple phenylpropanoids (propenyl benzene, phenylpropionic acid, and phenylpropyl alcohol), coumarins, lignins, lignans, and flavonoids [267].
7.3.1. Simple Phenylpropanoids
To date, limited simple phenylpropanoids have been identified from AMPs, including three phenylpropanoids (trans-isoelemicin, sarisan, and trans-isomyristicin) in the roots of Ligusticum mutellina [268]. Ferulic acid, one of the phenylpropionic acids, is an important bioactive metabolite of AMPs; it mainly exists in Angelica, Ligusticum, Ferula, and Pleurospermum genera [239,269,270]. Pharmacological studies have demonstrated that the ferulic acid in Angelica sinensis shows strong properties in inhibiting platelet aggregation, increasing coronary blood flow, and stimulating smooth muscle [271,272]; the ferulic acid in Angelica acutiloba shows antidiabetic, immunostimulant, antiinfammatory, antimicrobial, anti-arrhythmic, and antithrombotic activity [273]; and the ferulic acid in Ligusticum tenuissimum shows anti-melanogenic and anti-oxidative effects [274].
7.3.2. Coumarins
Coumarins are the most widespread in 20 genera of AMPs (e.g., Angelica, Bupleurum, and Peucedanum) and mainly include simple coumarins, pyranocoumarins, and furocoumarins [56,275,276]. In recent years, distinct coumarins have been identified from AMPs, such as 99 coumarins in Ferula [277], 116 coumarins in Angelica decursiva and Peucedanum praeruptorum [180], and 9 coumarins in Angelica dahurica [278]. Furthermore, 8 coumarins were selected as quality markers, including osthole (1) in Angelica biserrata and Cnidium monnieri; columbianadin (2) in Angelica biserrata; imperatorin (3) in Angelica dahurica and Angelica dahurica cv. Hangbaizhi; isoimperatorin (4) in Angelica dahurica, Angelica dahurica cv. Hangbaizhi, Notopterygium franchetii, and Notopterygium incisum; nodakenin (5) in Angelica decursiva, Notopterygium franchetii, and Notopterygium incisum; notopterol (8) in Notopterygium franchetii and Notopterygium incisum; and praeruptorin A (9) and praeruptorin B (10) in Peucedanum praeruptorum (see Table 2 and Figure 5) [18].
To date, various biological activities of coumarins have been demonstrated, including antifungal, antimicrobial, antiviral, anti-cancerous, antitumor, anti-inflammatory, anti-filarial, enzyme inhibitory, antiaflatoxigenic, analgesic, antioxidant, and oestrogenic [279,280,281,282]. For example, coumarins are recognized as the main bioactive constituents in Peucedani genus and play critical roles in relieving cough and asthma, strengthening heart function, as well as preventing and treating cardiovascular diseases such as nodakenin, (+)-praeruptorin B, and praeruptorin C [283]; imperatorin oxypeucedanin hydrate, xanthotoxol, bergaptol, 5-methoxy-8-hydroxypsoralen, isoimperatorin, phelloptorin, and pabularinone in Angelica dahurica exhibit moderate DPPH scavenging activity, strong ABTS·+ scavenging activity, and significant inhibition on HepG2 cells, which could be explored as new and potential natural antioxidants and cancer prevention agents [30]; pabulenol and osthol extracts from Angelica genuflexa show anti-platelet and anti-coagulant components [38]; and decursinol angelate in Angelica gigas shows platelet aggregation and blood coagulation activity [38].
7.4. Flavonoids
Flavonoids are a group of the most abundant secondary metabolites in plants [266]. Generally, flavonoids can be further categorized into eight subgroups, including flavones (e.g., apigenin, luteolin, and baicalein), flavonols (e.g., kaempferol, quercetin, and myricetin), flavanones (e.g., naringenin, hesperitin, and liquiritigenin), flavanonols (e.g., dihydrokaempferol, dihydromyricetin, and dihydroquercetin), isoflavones (e.g., daidzein, purerarin, and peterocarpin), aurones, anthocyanidins, and proanthocyanidins [284,285,286]. In recent years, flavonoids have been identified from AMPs, such as 6 flavonoids (e.g., luteolin, isoquercitrin, and rutin) in Ferula [107], 12 flavonoids (e.g., quercetin-3-O-rutinoside, kaempferol-3,7-di-O-rhamnoside, quercetin-3-O-arabinoside) in Bupleurum [287], and 18 flavonoids (e.g., rutin, quercetin, and quercitrin) in Hydrocotyle [135].
To date, various biological activities of flavonoids have been demonstrated, including antioxidant, antiinflammatory, antidiabetic, anticancer, antiobesity, and cardioprotective [284,288]. For example, the apigenin in Apium graveolens shows anticancer properties [21], flavonoids in Pimpinella diversifolia DC., Anthriscus sylvestris, and Sanicula astrantiifolia show antioxidant effects [197,289], and quercetin and its metabolites show vasodilator effects, with selectivity toward the resistance vessels [290].
7.5. Terpenoids
About 25,000 terpenoids have been reported in plants; they are diverse secondary metabolites containing three subgroups, including monoterpenoids, sesquiterpenes, and triterpenoids [291]. To date, terpenoids have been also identified in AMPs, such as 4 terpenoids (e.g., angelicoidenol, pregnenolone, and β-sitosterol) in Pleurospermum [142], 75 terpenoids (e.g., myrcene, farnesene, and xiongterpene) in Ligusticum [141], 109 terpenoids (e.g., nerolidol, guaiol, and ferulactone A) in Ferula [277], and 13 triterpenoids (e.g., ranuncoside, oleanane, and barrigenol) in Hydrocotyle sibthorpioides Lam. [136]. Specifically, saikosaponin triterpenes constitute the main class of secondary metabolites in the genus Bupleurum, with more than 90 saponins (e.g., saikosaponin a, b, and c) isolated [64,292].
Studies have found that terpenoids possess various biological activities, including anti-inflammatory, anti-oxidative, anti-fibrosis, antitumor, anti-Alzheimer’s disease, and anti-depression activities [293,294]. For example, the xiongterpene in Ligusticum chuanxiong shows insecticide effects [151], the asiaticoside in Centella asiatica shows antitumor properties [295], and the saikosaponin d in Bupleurum chinense DC. and Bupleurum scorzonerifolium show the effects of reducing blood glucose, inhibiting inflammation, and reducing insulin resistance [296].
7.6. Other Compounds
Chromones and phthalides also exist in AMPs and show pharmacological properties. Specifically, phthalides (e.g., ligustilide, n-butylidenephthalide, and Z-ligustilide) in Angelica sinensis show the effect of inhibiting vasodilation, decreasing platelet aggregation, as well as exerting analgesic, anti-inflammatory, and anti-proliferative effects [239]; butylphthalide in Ligusticum sinense shows anti-inflammatory and antithrombus effects, dilates blood vessels, and improves brain microcirculation and anti-myocardial ischemia [155].
In terms of chromones, 3 chromones (i.e., 5 thydroxy 2 [(angebyloxy) mehyI] fuan [3, 2′: 6, 7] chrmone, angeliticin A, and noreugenin) in Angelica polymorpha [297], 10 chromones (e.g., cnidimoside A, cnidimol B, and peucenin) in Cnidiummonnieri (L.) Cuss. [93], and 22 chromones (e.g., edebouriellol, hamaudol, and 3′(R)-(+)-hamaudol) in Saposhnikovia divaricate [218] have been identified. Studies have found that two chromones 3′S-(-)-O-acetylhamaudol and (±)-hamaudol in Angelica morii show the effect of inhibiting Ca2+ influx of vascular smooth muscle [298], prim-O-glucosylcimifugin and 5-O-methylvisammioside show antipyretic, analgesic, and anti-inflammatory effects [299], and chromones in Bupleurum multinerve show analgesic effects [300].
8. Effect of Bolting and Flowering (BF) on Yield and Quality
Previous studies have repeatedly emphasized that BF reduces the yield and quality of plants, especially in rhizomatous medicinal plants [11]. Here, a total of 38 rhizomatous plants that have been reported in the 228 AMPs are associated with BF (Table 3). Based on the effect degree of BF on the yield and quality, 38 rhizomatous AMPs belonging to 17 genera can be categorized into 3 classes: (1) BF significantly affects the yield and quality of 14 AMPs (i.e., Angelica acutiloba, Angelica biserrata, Angelica dahurica, Angelica dahurica cv. Hangbaizhi, Angelica decursiva, Angelica polymorpha, Angelica sinensis, Daucus carota, Heracleum hemsleyanum, Heracleum rapula, Libanotis iliensis, Libanotis seseloides, Peucedanum praeruptorum, and Saposhnikovia divaricata), and their rhizomes and/or roots are wholly lignified and cannot be used for clinical application; (2) BF affects the yield of 11 AMPs (i.e., Angelica gigas, Bupleurum chinense, Bupleurum scorzonerifolium, Changium smyrnioides, Chuanminshen violaceum, Glehnia littoralis, Ligusticum chuanxiong, Ligusticum jeholense, Ligusticum sinense, Notopterygium franchetii, and Notopterygium incisum), though their rhizomes or roots can be used as medicine to some extent; (3) BF has no significant effect on the yield and quality of 13 AMPs (i.e., Angelica sylvestris, Cicuta virosa, Ferula ferulaeoides, Ferula fukanensis, Ferula lehmannii, Ferula olivacea, Ferula sinkiangensis, Ferula teterrima, Levisticum officinale, Libanotis buchtormensis, Libanotis lancifolia, Libanotis spodotrichoma, and Pimpinella candolleana), and their rhizomes or roots can be used as medicine (Figure 6).
For example, for class (1) after BF, there was a 8.3- and 16.1-fold reduction of dry weight and quality marker ferulic acid content in Angelica sinensis [301] and a 1.5- and 1.5-fold reduction of dry weight and quality marker isoimperatorin content in Angelica dahurica [302]. For class (2), there was a 1.34-fold reduction of saikosaponinsands, while no significant change of dry weight in Bupleurum chinense was seen [303,304]; and a 2.0- and 1.7-fold reduction of dry weigh and polysaccharide content in Changium smyrnioides [305]. For class (3), there was no reduction of the yield and quality of the 13 AMPs at the harvest stages [19].
9. Approaches to Control BF
Generally, most Apiaceae plants are “low-temperature and long-day” perennial herbs; in other words, the plants must experience vernalization (i.e., an extended period of cool weather at 0 to 10 °C) and long days (>12 h daylight) to induce BF. Examples include Angelica sinensis [325], Daucus carota [326], and Coriandrum sativum [327].
Table 4 shows the approaches to inhibit BF of 24 AMPs. For example, the bolting rate of Angelica sinensis can be significantly decreased by planting the green stem cultivar (Mingui 2) instead of the purple stem cultivar (Mingui 1) [328], selecting smaller seedlings (i.e., root-shoulder diameter <0.55 cm) instead of larger seedlings [329,330], storing the seedlings at freezing temperature (i.e., <0 °C) during the overwinter stage [325], shading the plants under sunshade (i.e., >40%) during growth stage [331], and providing the plants with good growth conditions (e.g., plant intensity, nutrient and water balance) [332]. The bolting rate of Angelica dahurica can be significantly decreased through planting pure breeds [333], selecting immature seeds for seeding [308], increasing potassic fertilizer while decreasing nitrogen and phosphorus fertilizers [334], and planting using standard techniques [335]. The bolting rate of Saposhnikovia divaricata can also be significantly decreased by controlling the sunshade [336], sowing date [337], and planting density [338], and preventing excessive growth [336].
To inhibit the occurrence of BF in AMPs, several measures can be used, including breeding new cultivars, controlling the seedling age and size to delay the transition from vegetative growth to flowering, storing seedlings at freezing temperatures to avoid vernalization, growing the plants under sunshade to avoid long-day photoperiodism, and planting with standard techniques to reduce pests and diseases (Figure 7).
10. The Mechanism of BF Inducing the Rhizome Lignification
Extensive experiments have demonstrated that BF induces the lignification of fleshy rhizomes and enhances the degradation of metabolites [11,13,328]. Studies on anatomical structures reveal that the ratio of secondary phloem to secondary xylem respectively changes from 2:1 to 1:10 and 2/5–1/2 to 1/2–3/4 for the rhizomes of Angelica sinensis and Angelica dahurica before and after BF; meanwhile, the number of secretory cells producing essential oils significantly decreased [368,369]. Studies have found that the Early Bolting In Short Day (EBS) acts as a negative transcriptional regulator, preventing premature flowering of Arabidopsis thaliana, and co-enrichment of a subset of EBS-associated genes with H3K4me3, H3K27me3, and Polycomb repressor complex 2 has been observed [370]; a potential genetic resource for radish late-bolting breeding with introgression of the RsVRN1In-536 insertion allele into the early-bolting genotype could contribute to delayed bolting time of Raphanus sativus [371]; and peroxidases (PRXs) involved in lignin monomer biosynthesis were found to be down-regulated in Peucedanum praeruptorum at the bolting stage [372].
As is known, lignin biosynthesis belongs to the general phenylpropanoid pathway, which starts from phenylalanine and is catalyzed by a series of enzymes [13,373]. Specifically, phenylalanine is catalyzed to form p-Coumaroyl CoA sequentially through the three enzymes phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL). Lignin biosynthesis is synthesized via three sub-pathways, including the following: (1) lignins are catalyzed to from p-Coumaroyl CoA sequentially through the three enzymes cinnamoyl-CoA reductases (CCR), cinnamyl alcohol dehydrogenases (CAD), and laccases (LACs), and then coniferyl aldehyde is catalyzed to from p-Coumaroyl CoA sequentially through the four enzymes hydroxycinnamoyl shikimate/quinate transferase (HCT), p-coumarate 3-hydroxylase (C3H), caffeoyl-CoA 3-O-methyltransferase (CCOMT), and CCR; (2) lignins are catalyzed to from coniferyl aldehyde sequentially through the two enzymes CAD and LAC; (3) lignins are catalyzed to from coniferyl aldehyde sequentially through the three enzymes ferulate 5-hydroxylase (F5H), caffeic acid 3-O-methyltransferase (COMT), and LACs (Figure 8).
Although lignin biosynthesis has been depicted, studies on the mechanism of BF inducing rhizome lignification are still limited. To date, the mechanism of BF affecting Angelica sinensis has been revealed, with the expression level of genes (e.g., PAL1, 4CLs, HCT, CAD1, and LACs) significantly upregulated at the stem-node forming and elongating stage compared with the stem-node pre-differentiation stage, leading to the reduction of accumulation of secondary metabolites (i.e., ferulic acid and flavonoids) [13].
11. Conclusions and Future Aspects
In this review, we summarized the history of AMPs as TCMs, the classification of AMPs species, their traditional use, modern pharmacological use, and phytochemistry; the effect of BF on yield and quality, approaches to control BF, and the mechanisms of BF, inducing rhizome lignification. Although ca. 228 AMPs, 79 traditional uses, 62 modern uses, and 5 main kinds of metabolites have been recorded, the potential properties remain to be exploited. Although BF significantly reduces the yield and quality of AMPs, effective measures to inhibit BF have not been applied in the field, and the mechanisms of BF have not been systemically revealed for most AMPs. Thus, in order to effectively control the BF of AMPs to improve their quality and yield, on the one hand, standard cultivation techniques of AMPs should be applied; on the other hand, new cultivars should be developed by modern biotechnology such as the CRISPR/Cas9 system.
M.L. (Meiling Li) collected and analyzed the references, drew the chemical structures, and wrote the manuscript; M.L. (Min Li) checked the classification and traditional use of Apiaceae medicinal plants; L.W. checked the language and modern pharmacological use; M.L. (Mengfei Li): conceptualization, methodology, supervision, writing—review and editing; J.W.: conceptualization and project administration. All authors have read and agreed to the published version of the manuscript.
Not applicable.
Not applicable.
Not applicable.
The authors declare no conflict of interest.
Footnotes
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Figure 4. Core structures of five different bioactive compounds identified from the 228 AMPs.
Figure 5. Structures of the 18 quality markers from the 22 AMPs in the “Pharmacopoeia of the People’s Republic of China” (2020) [18].
Figure 6. Cluster of the 38 rhizomatous AMPs affected by bolting and flowering (BF). The red color indicates that BF significantly affects the yield and quality; the yellow color indicates that BF affects the yield, though the rhizomes or roots can be used as medicine to some extent; and the green color indicates that BF has no significant effect on the yield and quality. a: Angelica, b: Ferula, c: Libanotis, d: Ligusticum, e: Heracleum, f: Notopterygium, g: Bupleurum, h: Changium, i: Peucedanum, j: Saposhnikovia, k: Glehnia, l: Cicuta, m: Daucus, n: Levisticum, o: Anthriscus, p: Chuanminshen, and q: Pimpinella.
Figure 8. Schematic representation of biosynthetic pathways of lignins. Abbreviations: PAL, phenylalanine ammonia lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate-CoA ligase; HCT, hydroxycinnamoyl shikimate/quinate transferase; C3H, p-coumarate 3-hydroxylase; CCOMT, caffeoyl-CoA 3-O-methyltransferase; CCR, cinnamoyl-CoA reductases; CADs, cinnamyl alcohol dehydrogenases; LACs, laccases; F5H, ferulate 5-hydroxylase; COMT, caffeic acid 3-O-methyltransferase. The green color indicates the common phenylpropanoid pathway of phenylpropanoids, and the red color indicates the lignin biosynthetic sub-pathway. The ①, ② and ③ means different sub-pathways of lignin biosynthesis.
The classification, traditional use, modern pharmacological use, and main metabolites of the 228 AMPs.
No. | Plant Species | Local Name in Chinese | Parts of Plant Used | Traditional Use | Modern Pharmacological Use | Main Metabolites | References |
---|---|---|---|---|---|---|---|
1 | Aegopodium alpestre Ledeb. | Xiaoyeqin | Stems and leaves | Dispelling wind, relieving pain, and treating influenza | Treatment of rheumatic diseases, obesity, and hypotensive | Apiole, undecane, and limonene | [ |
2 | Ammi majus L. | Daamiqin | Fruits | Treatment of vitiligo | \ | Furanocoumarins | [ |
3 | Anethum graveolens L. | Shiluo | Fruits, leaves, or whole plant | Treatment of bladder inflammation, liver diseases, and insomnia | Antibacterial, antifungal, antioxidant | Alkaloid, terpenoids, and flavonoids | [ |
4 | Angelica acutiloba (Siebold & Zucc.) Kitag. | Dongdanggui or ribendanggui | Roots | Treatment of menoxenia and anemia | Hemogenic, analgesic, and sedative activities | Ferulic acid, ligustilide, and angelicide | [ |
5 | Angelica amurensis Schischk. | Heishuidanggui or chaoxiandanggui | Roots | \ | \ | α-pinene, limonene, and sabinene | [ |
6 | Angelica anomala Avé-Lall. | Xiayedanggui or yixingdanggui | Roots | Dispelling wind, eliminating dampness, and relieving pain | Antioxidant, anti-inflammatory, and antitumor | Isoimperatorin, umbelliferone, and adenosine | [ |
7 | Angelica apaensis R. H. Shan & C. C. Yuan | Faluohai or abadanggui | Roots | Relieving pain, relieving cough and asthma | Bacteriostat, anti-inflammatory | Oxypeucedanin, isoimperatorin, and oxypeucedanin hydrate | [ |
8 | ** Angelica biserrata (R. H. Shan & C. C. Yuan) C. C. Yuan & R. H. Shan | Duhuo or maodanggui | Roots | Dispelling wind, eliminating dampness, and relieving pain | Antitumor, anti-inflammatory, and antioxidant | Coumarins osthole, columbianadin, and volatile oils | [ |
9 | Angelica cartilaginomarginata var. Foliosa C. C. Yuan & R. H. Shan | Shangaoben | Roots | \ | \ | \ | [ |
10 | ** Angelica dahurica (Fisch. Ex Hoffm.) Benth. & Hook. F. Ex Franch. & Sav. | Baizhi | Roots | Treatment of acne, erythema, and headache | Anti-inflammatory, anti-mutagenic, and antitumor | Scopoletin and psoralen | [ |
11 | ** Angelica dahurica cv. Hangbaizhi | Hangbaizhi | Roots | Treatment of headache, toothache, abscess, and furunculosis | Estrogenic, cytotoxic, and anti-inflammatory | Isoimperatorin, imperatorin, and phellopterin | [ |
12 | Angelica dahurica var. Formosana (H. Boissieu) Yen | Taiwanduhuo | Roots | \ | Anti-staphylococca | Falcarindiol | [ |
13 | ** Angelica decursiva (Miq.) Franch. & Sav. | Zihuaqianhu | Roots | A remedy for thick phlegm, asthma, and upper respiratory tract infections | Antioxidant and anti-inflammatory potential | Decursin, decursidin, and nodakenetin | [ |
14 | Angelica gigas Nakai | Chaoxiandanggui | Roots | Treatment of dysmenorrhea, amenorrhea, and menopause | Anti-platelet effects | Decursin and decursinol angelate | [ |
15 | Angelica laxifoliata Diels | Shuyedanggui | Roots | Dispelling wind and relieving pain | Treatment of wind-damp pain, lumbus, and knees | Angelicin, β-sitosterol, and laxifolin | [ |
16 | Angelica megaphylla Diels | Dayedanggui | Roots | Used as Angelica sinensis | Used as A. Sinensis | Ferulic acid, ligustilide, and angelol | [ |
17 | Angelica morii Hayata | Fushen | Roots and leaves | Treatment of spleen and stomach, cold cough, and toothache | Used for diarrhea caused by deficiency of spleen and for cough caused by weakness and chill | Imperatorin, isoimperatorin, and phellopterin | [ |
18 | Angelica nitida H. Wolff | Qinghaidanggui | Roots | Nourishing the blood, regulating menstrual disorder, and relieving pain | \ | Isoimperatorin, imperatorin, and cnidilin | [ |
19 | Angelica polymorpha Maxim. | Guaiqin or shanqincai | Roots | Dispelling wind and relieving pain | Treatment of stomachache | Coumarins, sesquiterpenoids, and alkaloids | [ |
20 | ** Angelica sinensis (Oliv.) Diels | Danggui | Roots | Nourishing the blood, regulating menstrual disorder, and relieving pain | Cardio-cerebrovascular, anti-inflammatory, and antioxidant | Ferulic acid, alkylphthalides, and polysaccharides | [ |
21 | Angelica sinensis var. Wilsonii | Emeidanggui | Roots | Used as Angelica sinensis, relieving pain | Used as Angelica sinensis | Isoimperatorin, coumarin, and oxypeucedanin | [ |
22 | Angelica sylvestris L. | Lindanggui | Roots | Relieves rheumatism and sweating, provides detoxification | \ | Cnidilide, sedanenolide, and ligustilide | [ |
23 | Angelica tsinlingensis K. T. Fu | Qinlingdanggui | Roots | \ | \ | \ | [ |
24 | Angelica valida Diels | Wuduhuo or yandanggui | Roots | \ | \ | \ | [ |
25 | Anthriscus nemorosa (M. Bieb.) Spreng. | Ciguoeshen | Roots, whole plant, and leaves | Used as Peucedanum praeruptorum | Used as Peucedanum praeruptorum | \ | [ |
26 | Anthriscus sylvestris (L.) Hoffm. | Eshen | Roots and leaves | Invigorating spleen, replenishing qi, and expelling phlegm | Antitumor, antioxidation, and antisenity | Phenylpropanoids, flavonoids, and steroidal | [ |
27 | Apium graveolens L. | Hanqin | Whole plant, roots, and rhizome | Dispelling wind, eliminating dampness, and detoxification | Hypertension, hyperlipidemia, and dysuria | Organic acids, apigenin, and volatile oils | [ |
28 | Archangelica brevicaulisf | Duanjinggudanggui | Roots | Used as Angelica biserrata | Used as Angelica biserrata | Osthol, imperatorin, and archangelicin | [ |
29 | Bupleurum angustissimum (Franch.) Kitag. | Xiayechaihu | Roots | \ | \ | Saikosaponins (a, c, and d), β -terpinene, and β -thujene | [ |
30 | Bupleurum aureum Fisch. | Jinhuangchaihu | Roots | \ | \ | Saikosaponins (a, c, and d) | [ |
31 | Bupleurum bicaule Helm | Zhuiyechaihu | Roots | Used as Bupleurum scorzonerifolium | Used as Bupleurum scorzonerifolium | Saikosaponin d, prosaikogenin G, and prosaikogenin F | [ |
32 | Bupleurum candollei Wall. Ex DC. | Chuandianchaihu | Whole plant | Diminishing inflammation, detoxification, dispelling wind, and relieving convulsion | \ | Saikosaponin and flavonoids | [ |
33 | Bupleurum chaishoui R. H. Shan & M. L. Sheh | Chaishou | Roots and rhizome | Used as Bupleurum chinense | Used as Bupleurum chinense | Saikosaponins (a, c, and d) | [ |
34 | ** Bupleurum chinense DC. | Beichaihu | Roots | Treatment of chronic hepatitis, kidney syndrome, and inflammatory diseases | Anti-allergen, analgesic, and anti-inflammation | Saikosaponins (a, c, and d) | [ |
35 | Bupleurum chinense DC. F. Octoradiatum (Bunge) Shan et Sheh | Baihuashanchaihu | Roots | Used as Bupleurum chinense | Anti-allergen, analgesic, and anti-inflammation | Saikosaponins (a, c, and d) | [ |
36 | Bupleurum chinense DC. F. Vanheurckii (Muell.-Arg.) Shan et Y. Li | Yantaichaihu | Roots | Used as Bupleurum chinense | Anti-allergen, analgesic, and anti-inflammation | Saikosaponins (a, c, and d) | [ |
37 | Bupleurum commelynoideum var. Flaviflorum R. H. Shan & Yin Li | Huanghuayazhichaihu | Roots, rhizome, and whole plant | Antipyretic-analgesic effect, choleretic, and hepatoprotection | Treating or relieving inflammatory bowel disease | Saikosaponins (a, c, and d), β-pinene, and perillen | [ |
38 | Bupleurum densiflorum Rupr. | Mihuachaihu | Roots | \ | \ | \ | [ |
39 | Bupleurum dielsianum H. Wolff | Taibaichaihu | Roots | \ | \ | \ | [ |
40 | Bupleurum euphorbioides Nakai | Dabaochaihu | Roots | \ | \ | Saikosaponins, perillen, and undecanal | [ |
41 | Bupleurum exaltatum M. Bieb. | Xinjiangchaihu | Roots | \ | \ | \ | [ |
42 | Bupleurum falcatum L. | Sandaochaihu | Roots | \ | Treatment of colds and upper respiratory tract infections | Saikosaponins (a, c, and d) | [ |
43 | Bupleurum gansuense S. L. Pan et Hsu | Gansuchaihu | Roots | \ | \ | \ | [ |
44 | Bupleurum hamiltonii N. P. Balakr. | Xiaochaihu | Roots or whole plant | Antipyretic-analgesic effect, treatment of chill and fever alternation | Treatment of stomach pain, dysuria, and cough | Kaerophyllin, isokaerophyllin, and ethyl caffeic acid | [ |
45 | Bupleurum hamiltonii var. Hamiltonii/Bupleurum tenue | Xiaochaihu | Roots or whole plant | Used as Bupleurum hamiltonii N. P. Balakr. | Used as Bupleurum hamiltonii N. P. Balakr. | \ | [ |
46 | Bupleurum hamiltonii var. Humile (Franch.) R. H. Shan & M. L. Sheh | Aixiaochaihu | Roots | \ | \ | \ | [ |
47 | Bupleurum huizei S. L. Pan sp. Nov. | Huizechaihu | Roots | \ | \ | \ | [ |
48 | Bupleurum kaoi T. S. Liu, C. Y. Chao & T. I. Chuang | Taiwanchaihu or gaoshichaihu | Roots | \ | Treatment of influenza and fever | Saikosaponin a, c | [ |
49 | Bupleurum komarovianum Lincz. | Changbaichaihu | Roots | Used as Bupleurum chinense | Used as Bupleurum chinense | Saikosaponins (a, c, and d) and volatile oils (1-caprylene, limonene, and thymol) | [ |
50 | Bupleurum krylovianum Schischk. Ex Krylov | Aertaichaihu | Roots | \ | \ | Saikosaponins (a, c, and d) | [ |
51 | Bupleurum kunmingense Yin Li & S. L. Pan | Jiuyechaihu | Roots | \ | Immunomodulatory | Saikosaponins (a, c, and d), cyclohexanone, and 2- methyldodecane | [ |
52 | Bupleurum longicaule var. Amplexicaule C. Y. Wu | Baojingchaihu | Roots | \ | \ | Saikosaponins (a, c, and d) | [ |
53 | Bupleurum longicaule var. Franchetii H. Boissieu | Kongxinchaihu | Roots or whole plant | \ | \ | Saikosaponins (a, c, and d), cyclohexanone, and myrcene | [ |
54 | Bupleurum longicaule var. Giraldii H. Wolff | Qinlingchaihu | Roots | \ | \ | Saikosaponins (a, c, and d), narcissin, and rutin | [ |
55 | Bupleurum longiradiatum Turcz. | Dayechaihu | Roots | Treatment of gout and inflammatory illness | Anti-inflammatory and/or antimicrobial | Thymol, butylidene phthalide, and 5-indolol | [ |
56 | Bupleurum luxiense Yin Li & S. L. Pan | Luxichaihu | Roots | \ | \ | Saikosaponins (a, c, and d), n-heptaldehyde, and octanal | [ |
57 | Bupleurum malconense R. H. Shan & Yin Li | Maweichaihu | Whole plant | Hepatoprotection and antipyretic effect | Acute toxicity | Saikosaponins (a, c, and d), rutin, and quercetin | [ |
58 | Bupleurum marginatum var. Marginatum | Zichaihu or zhuyefangfeng | Whole plant | Hepatoprotection and antipyretic effect | Anti-allergen, analgesic, and anti-inflammatory | Saikosaponins (a, c, and d), rutin, and quercetin | [ |
59 | Bupleurum marginatum var. Stenophyllum (H. Wolff) R. H. Shan & Yin Li | Zhaizhuyechaihu | Whole plant | \ | \ | Saikosaponins (a, c, and d), chikusaikoside I, II, and 2- methylcyclopentanone | [ |
60 | Bupleurum marginatum Wall. Ex DC. | Zhuyechaihu | Whole plant and roots | Hepatoprotection and antipyretic effect | Anti-allergen, analgesic, and anti-inflammatory | Saikosaponins (a, c, and d), rutin, and quercetin | [ |
61 | Bupleurum microcephalum Diels | Maweichaihu | Whole plant and roots | Hepatoprotection and antipyretic effect | Anti-allergen, analgesic, and anti-inflammatory | Saikosaponins (a, c, and d), rutin, and quercetin | [ |
62 | Bupleurum petiolulatum var. tenerum R. H. Shan & Yin Li | Xijingyoubingchaihu | Whole plant | Antipyretic-analgesic effect | Anti-inflammatory | \ | [ |
63 | Bupleurum polyclonum Yin Li & S. L. Pan | Duozhichaihu | Roots | \ | Anticancer | Saikosaponins (a, c, and d), 4′-O-saikosaponin-a, and fenchane | [ |
64 | Bupleurum rockii H. Wolff | Lijiangchaihu | Roots | \ | \ | Saikosaponins (a, c, and d), thymol, and β-guaiene | [ |
65 | Bupleurum scorzonerifolium f. Longiradiatum | Changsanhongchaihu | Roots | Used as Bupleurum chinense | Used as Bupleurum chinense | \ | [ |
66 | Bupleurum scorzonerifolium f. Pauciflorum | Shaohuahongchaihu | Roots | Used as Bupleurum chinense | Used as Bupleurum chinense | \ | [ |
67 | ** Bupleurum scorzonerifolium Willd. | Hongchaihu or zhuyechaihu | Roots | Antipyresis, relief of liver issues and menstrual disorders | Used as Bupleurum chinense | Rutin, quercetin, and kaempferol | [ |
68 | Bupleurum sibiricum var. Jeholense (Nakai) Y. C. Chu ex R. H. Shan & Yin Li | Wulingchaihu | Roots | \ | \ | \ | [ |
69 | Bupleurum sibiricum Vest | Xinganchaihu | Roots | Used as Bupleurum chinense | Used as Bupleurum chinense | Saikosaponin a, rutin, and quercetin | [ |
70 | Bupleurum sichuanense S. L. Pan et Hsu. | Sichuanchaihu | Roots | \ | \ | Saikosaponins (a, c, and d) | [ |
71 | Bupleurum smithii H. Wolff | Heichaihu | Roots | Antipyretic-analgesic effect | Anti-inflammatory, immunomodulatory, and anti-hepatic injury | Saponins, volatile oils, and lignans | [ |
72 | Bupleurum smithii var. Parvifolium R. H. Shan & Yin Li | Xiaoyeheichaihu | Roots | Relief of liver issues and activation of yang energy | Anti-inflammatory, immunomodulatory, and antitumor | Falcarinol, saponins, and flavonoids | [ |
73 | Bupleurum thianschanicum Freyn | Tianshanchaihu | Roots | \ | \ | Saikosaponins (a, c, and d) | [ |
74 | Bupleurum triradiatum Adams ex Hoffm. | Sanfuchaihu | Roots | \ | \ | \ | [ |
75 | Bupleurum wenchuanense R. H. Shan & Yin Li | Wenchuanchaihu | Roots | Used as Bupleurum | Used as Bupleurum | Quercetin-3-O-α-L-rhamnoside, quercetin, and rutin | [ |
76 | Bupleurum yinchowense R. H. Shan & Yin Li | Yinzhouchaihu or hongchaihu | Roots | Antipyresis, relief of liver issues, and activation of yang energy | Used as Bupleurum | Saikosaponins (a, c, and d) | [ |
77 | Carum buriaticum Turcz. | Tiangelvzi | Roots and fruits | \ | \ | \ | [ |
78 | Carum carvi L. | Zanghuixiang | Roots, fruits, and leaves | Dispelling wind, eliminating dampness, invigorating the stomach, and treating heart disease | Anti-bacterial, antioxidant, and antitumor | Carvone, limonene, and dihydrocarvone | [ |
79 | * Centella asiatica (L.) Urb. | Jixuecao | Whole plant | Clearing heat, promoting diuresis, and treating toxicity | Anti-bacterial, anti-depressive, and neuroprotective | Asiaticoside, madecassoside, and elemene | [ |
80 | ** Changium smyrnioides H. Wolff | Mingdangshen | Roots | Strengthening with tonics, moistening lungs, clearing phlegm, and calming the liver | Immunomodulatory, relieving fatigue, and enhancing adaptability | Cetylic acid, succinic acid, and imperatorin | [ |
81 | Chuanminshen violaceum M. L. Sheh & R. H. Shan | Chuanmingshen | Roots | Moistening the lungs, clearning phlegm, harmonizing the stomach, and stimulating liquids | Antioxidant, enhancing immunity, and antimutation | Polysaccharides, coumarins, and flavonoids | [ |
82 | Cicuta virosa L. | Duqin | Roots and rhizome | Expelling phlegm and detoxification | Treatment of osteomyelitis, gout, and rheumatism | P-cymene, cicutoxine, and L-limonene | [ |
83 | * Cnidium monnieri (L.) Spreng. | Shechuang | Fruits | Dispelling wind, relieving convulsion, treating impotence | Antibacterial, antiviral, and antimutagenesis | Osthole, limonene, and cnidimoside A | [ |
84 | Cnidium officinale | Dongchuanxiong | Roots | Used as Cnidium monnieri | Used as Cnidium monnieri | \ | [ |
85 | Conioselinum acuminatum (Franch.) Lavrova | Shuigaoben | Roots | \ | \ | Sabinene, α-pinene, and aromadendrene | [ |
86 | Conioselinum anthriscoides ‘Fuxiong’ | Fuxiong | Roots | \ | \ | β-bergamotene | [ |
87 | Conioselinum tenuisectum (H. Boissieu) Pimenov & Kljuykov | Xiliegaoben | Roots | \ | \ | \ | [ |
88 | Conioselinum vaginatum (Spreng.) Thell. | Xinjianggaoben or qiaoshanxiong | Roots | Dispelling wind, eliminating dampness, and relieving pain | Treatment of common cold due to wind-cold and gastro spasm | Diligustilide, daucosterol, and palmitic acid | [ |
89 | Conium maculatum L. | Dushen | Whole plant | Relieving pain and relieving muscular spasm | Treatment of cancer | Coniine, N-methyl-coniine, conhydrine 2-(1-hydroxypropyl)-piperidine | [ |
90 | Coriandrum sativum L. | Husui | Whole plant, fruits, and stems | Invigorating the stomach and promoting eruption | Antibacterial, antifungal, and antioxidant | Petroselinic acid, linoleic acid, and oleic acid | [ |
91 | Cryptotaenia japonica Hassk. | Sanyeqin | Whole plant | Treatment of weakness, urinary closure, and swelling | Antioxidant, protection of liver, and anticancer | Friedelin, stigmasterol, and apigenin | [ |
92 | Cuminum cyminum L. | Ziranqin | Fruits | Treatment of indigestion and stomach/abdominal pain | Antibacterial, antioxidant, and radical-scavenging properties | α-pinene, 1,8-cineole, and linalool | [ |
93 | Cyclorhiza peucedanifolia (Franch.) Constance | Nanzhuyehuangenqin | Fruits | Enriching the blood, activating the blood, and regulating menstrual disorder | \ | \ | [ |
94 | Daucus carota L. | Carrot | Fruits | Treatment of ascariasis, enterobiasis, and tapeworm disease | Insecticidal, anti-bacterial, and anticancer | α-pinene, isophorone oxide, and and quercetrin | [ |
95 | Daucus carota var. Carota | Wild carrot | Fruits | Treatment of ascariasis, enterobiasis, and tapeworm disease | Insecticidal, anti-bacterial, and anticancer | α-pinene, β-bisabolene, and luteolin | [ |
96 | Daucus carota var. Sativus Hoffm. | Wild carrot | Roots and basal leaves | Strengthening spleen, treatment of dyspepsia and chronic dysentery | Enhancing immunity, anticancer and anti-aging | Carotene, (1R)-α-pinene, and β-carotene | [ |
97 | Eriocycla albescens (Franch.) H. Wolff | Dianqianghuo | Roots | \ | \ | \ | [ |
98 | Eryngium foetidum L. | Ciqin | Whole plant | Diuresis, treatment of dropsy and snakebite | Bacteriostat, diminishing of inflammation, and promotion of detumescence | Lanolin alcohol, carotene, and n-nonyl aldehyde | [ |
99 | Ferula bungeana Kitag. | Yingawei | Whole plant and seeds | Heat clearing and detoxifying, relieving pain and expelling phlegm, and arresting coughing | Treatment of cold, bronchopneumonia, and pulmonary tuberculosis | Anisole, d-fenchone, and limonen | [ |
100 | Ferula caspica M. Bieb. | Lihaiawei | Roots and resin | Eliminating stagnated food, relieving dyspepsia, insecticide | Treatment of toxicity | Umbelliprenin, farnesyl alcohol, and umbelliferone | [ |
101 | Ferula conocaula Korovin | Yuanzhuijingawei | Resin, roots, and rhizome | Eliminating stagnated food, insecticide, treatment of abdominal mass | Anticancer and treatment of influenza | Umbelliprenin, fezelol, and feterin | [ |
102 | Ferula feruloides (Steud.) Korovin | Xiangawei | Roots and resin | Treatment of chilliness, and heart and abdominal pain | Insecticidal, bacteriostat, and antitumor | α-pinene, farnesene and toluene | [ |
103 | ** Ferula fukanensis K. M. Shen | Fukangawei | Resin | Eliminating stagnated food, relieving dyspepsia, insecticide | Treatment of stomach disease, rheumatism, and joint pain | Ferulic acid, guaiol, and ethyl-p-hydroxybenzoate | [ |
104 | Ferula jaeschkeana Vatke | Zhongyaawei | Resin of overground part | Eliminating stagnated food, insecticide, treatment of tumors, wounds, and peptic ulcers | Antifertility | Jaeschkeanadiol, α-pinene, and β-pinene | [ |
105 | Ferula krylovii Korovin | Tuoliawei | Resin | Eliminating stagnated food, insecticide | \ | Fekrynol, ferukrin and fekrynol acetate | [ |
106 | Ferula lehmannii Boiss. | Daguoawei | Resin | Detoxification, deodorization, and insecticide | Treatment of gastropathy, rheumatism, and arthralgia | Lehmannolone, sinkianone, and lehmannolone A | [ |
107 | Ferula moschata (Reinsch) Koso-Pol. | Shexiangawei | Roots | Sedative, treatment of spasmolysis and hysteria | Suppresses the replication of human immunodeficiency virus in H9 lymphocytes and suppresses the production of cytokine | Fezelol, fesumtuorin A, and fesumtuorin B | [ |
108 | Ferula olivacea (Diels) H. Wolff ex Hand.-Mazz. | Lanlvawei | Resin | Wind-heat dispersing, expelling phlegm, and arresting cough | \ | \ | [ |
109 | ** Ferula sinkiangensis K. M. Shen | Xinjiangawei | Resin | Eliminating stagnated food, detoxification, insecticide | Antioxidant, antitumor, and antiviral | Ferulic acid, fekrynol, and lehmannolone | [ |
110 | Ferula songarica Pall. Ex Schult. | Zhungaeawei | Resin and whole plant | Eliminating stagnated food, insecticide | \ | 2,4-dihydroxylacetophenone, 3,3′, 4,4′-biphenyltetracarboxylic acid, and Δ3-carene | [ |
111 | Ferula teterrima Kar. & Kir. | Chouawei | Resin | Eliminating stagnated food, insecticide | Treatment of malaria and dysentery | Feterin, badrakemin, and badrakemin acetate | [ |
112 | * Foeniculum vulgare Mill. | Xiaohuixiang | Fruits, roots, stems, leaves, and whole plant | Dispelling wind, relieving pain, and harmonizing the stomach | Bacteriostat, anti-inflammatory, and insecticide | Trans-anethole, estragole, and anisaldehyde | [ |
113 | ** Glehnia littoralis F. Schmidt ex Miq. | Beishashen | Roots | Heat clearing and detoxifying, diminishing inflammation, expelling phlegm, and arresting cough | Anti-inflammatory, bacteriostat, and antitumor | Phenyllactic acid, catechol, and quercetin | [ |
114 | Hansenia oviformis (R. H. Shan) Pimenov & Kljuykov | Luanyeqianghuo | Rhizome, roots, and leaves | Treatment of rheumatic arthralgia, cold due to wind-cold, and headache | \ | \ | [ |
115 | Heracleum barmanicum Kurz | Yinduduhuo | Roots | Treatment of cold abdominalgia | \ | \ | [ |
116 | Heracleum candicans Wall. Ex DC. | Baiyunhua | Roots | Dispelling wind, eliminating dampness, and relieving pain | Treatment of cold headache | Bergapten, heraclenin, and imperatorin | [ |
117 | Heracleum dissectifolium K. T. Fu | Duolieduhuo | Roots | Dispelling wind, eliminating dampness, and relieving pain | \ | \ | [ |
118 | Heracleum fargesii H. Boissieu | Chengkouduhuo | Roots | \ | \ | \ | [ |
119 | Heracleum franchetii M. Hiroe | Jianyeduhuo | Roots and rhizome | \ | \ | \ | [ |
120 | Heracleum hemsleyanum | Niuweiduhuo | Roots and rhizome | Dispelling wind, eliminating dampness, and relieving pain | Antioxidant, anti-inflammatory, and antitumor | β-pinene, α-pinene, and (1S)-6,6-dimethyl-2-methylene-bicyclo [3.1.1] heptane | [ |
121 | Heracleum hemsleyanum Diels | Beiduhuo or dahuo | Roots and rhizome | Dispelling wind, eliminating dampness, and relieving pain | Antioxidant, anti-inflammatory, and antitumor | Osthole, columbianadin, and columbianetin | [ |
122 | Heracleum henryi H. Wolff | Nanguaqi | Roots | Clearing and activating the channels and collaterals, relieving pain and scattered stasis | \ | Turgeniifolin B, turgeniifolin C, and bergapten | [ |
123 | Heracleum millefolium var. Millefolium | Qianyeduhuo or zangdanggui | Roots and rhizome | Detumescence, treating masses, and treating leprosy | \ | \ | [ |
124 | Heracleum moellendorffii Hance | Duanmaoduhuo | Roots and rhizome | Clearing and activating the channels and collaterals, relieving pain and scattered stasis | Bacteriostat | β-pinene, α-pinene, and pentadecane | [ |
125 | Heracleum oreocharis H. Wolff | Shandiduhuo | Roots | \ | \ | \ | [ |
126 | Heracleum rapula Franch. | Baiyunhua | Roots | Clearing and activating the channels and collaterals, relieving pain and scattered stasis | Bacteriostat, treatment of asthma, and chronic bronchitis | Ostholce, marmesin, and imperatorin | [ |
127 | Heracleum scabridum Franch. | Dianbaizhi or caoduhuo | Roots, rhizome, and fruits | Treatment of common cold due to wind-cold, headache, cough, and asthma | \ | Heraclenol, oxypeucedanin-hydrate, and byakangelicin | [ |
128 | Heracleum souliei H. Boissieu | Xiaoduhuo | Roots | \ | \ | Bergapten | [ |
129 | Heracleum stenopterum Diels | Xiachiduhuo | Roots | Treatment of cold and rheumatism | \ | Bergapten, isopimpinellin, and sphondin | [ |
130 | Heracleum tiliifolium H. Wolff | Duanyeduhuo | Roots | Dispelling wind, eliminating dampness, and relieving pain | \ | \ | [ |
131 | Heracleum vicinum H. Boissieu | Pingjieduhuo | Roots | Used as Notopterygium incisum | \ | \ | [ |
132 | Heracleum wenchuanense F. T. Pu & X. J. He | Wenchuanduhuo | Roots | \ | \ | \ | [ |
133 | Heracleum wolongense F. T. Pu & X. J. He | Wolongduhuo | Roots | \ | \ | \ | [ |
134 | Heracleum yungningense Hand.-Mazz. | Niuweiduhuo | Roots and rhizome | Treatment of waist and knee pain, limb spasm, and leucoderma | \ | Pimpinellin, angelicin, and isobergapten | [ |
135 | Hydrocotyle himalaica P. K. Mukh. | Binghuatianhusui | Whole plant | Heat clearing, detoxifying, and eliminating dampness | \ | Asiaticoside, madecassoside, and quercetin | [ |
136 | Hydrocotyle hookeri subsp. Chinensis (Dunn ex R. H. Shan & S. L. Liou) M. F. Watson & M. L. Sheh | Tongqiancao | Whole plant | Relieving pain, diuresis, and removing dampness | Antiviral, antitumor, and anti-bacterial | Flavonoids, triterpenes, and volatile oils | [ |
137 | Hydrocotyle nepalensis Hook. | Hongmaticao | Whole plant | Clearing heat and promoting diuresis, dissolving stasis, and hemostasis and detoxification | Antiviral, antitumor, and anti-bacterial | Flavonoids, triterpenes, and volatile oils | [ |
138 | Hydrocotyle sibthorpioides Lam. | Xiaojinqiancao | Whole plant | Heat clearing, diuresis, and detumescence | Anti-ulcer, antilipemic, and antiviral | Quercetin, isorhamnetin, and asiaticoside | [ |
139 | Hydrocotyle sibthorpioides var. batrachium (Hance) Hand.-Mazz. Ex R. H. Shan | Tianhusui or potongqian | Whole plant | Heat clearing and detoxifying, eliminating dampness, and diuresis | Anti-ulcer, spasmolysis, and anti-inflammatory | Benzene propane nitrile, phytol, and caryophyllene oxide | [ |
140 | Hydrocotyle wilfordii Maxim. | Yutengcao | Whole plant | As Hydrocotyle nepalensis Hook. | As Hydrocotyle nepalensis Hook. | Asiaticoside, madecassoside, and quercetin | [ |
141 | Hymenidium chloroleucum (Diels) Pimenov & Kljuykov | Xizangdiangaoben | Roots or whole plant | Regulating flow of qi, invigorating the stomach, and activating blood | Anti-inflammatory, analgesia, and nutritious function | Nobiletin, falcarindiol, and isoliquiritingenin | [ |
142 | Hymenidium davidii (Franch.) Pimenov & Kljuykov | Songpanlengziqin | Roots | \ | \ | \ | [ |
143 | Hymenidium delavayi (Franch.) Pimenov & Kljuykov | Lijianggaoben | Roots | \ | \ | \ | [ |
144 | Hymenidium lindleyanum (Klotzsch) Pimenov & Kljuykov | Tianshanlengziqin | Roots | Treatment of hypertension, coronary heart disease, and altitude stress | \ | Bergapten, isoimperatorin, and oxypeucedanin | [ |
145 | Kitagawia formosana (Hayata) Pimenov | Taiwanqianhu | Roots | \ | \ | \ | [ |
146 | Kitagawia macilenta (Franch.) Pimenov | Xilieqianhu | Roots | Expelling phlegm | \ | \ | [ |
147 | Kitagawia terebinthacea (Fisch. Ex Trevir.) Pimenov | Shifangfeng | Roots | Clearing heat and dispelling wind, calming the adverse-rising energy, and expelling phlegm | Treatment of cold and cough, bronchitis, and cough during pregnancy | Isoepoxybuterixin | [ |
148 | Levisticum officinale W. D. J. Koch | Oudanggui | Roots | Diuresis, invigorating the stomach, and expelling phlegm | Inhibition of rhythmic uterine contractions, Scavenging oxygen free radicals, and anti-lipid peroxidation | Ligustilide, α-phellandrene, and β-phellandrene | [ |
149 | Libanotis buchtormensis (Fisch.) DC. | Yanfeng | Roots | Treating wind chill, dispelling wind dampness, and relieving pain | Bacteriostat, treatment of common cold due to wind-cold, generalized pain, and cough | Falcarinone, isoimperatorin, and xanthotoxin | [ |
150 | Libanotis iliensis (Lipsky) Korovin | Xiyefangfeng | Roots | Expel wind-cold pathogens, thermolysis, and relieving pain | Treatment of common cold due to wind-cold and rheumatic arthritis | Archangelin and iliensin | [ |
151 | Libanotis lancifolia K. T. Fu | Yanfeng | Roots | Divergent wind chill, dispelling wind-damp, and relieving pain | Bacteriostat, treatment of common cold due to wind-cold, generalized pain, and cough | Falcarinone, isoimperatorin, and xanthotoxin | [ |
152 | Libanotis laticalycina R. H. Shan & M. L. Sheh | Shuifangfeng | Roots | Dispelling wind, antispasmodic, and relieving pain | Analgesic, sedative, and anti-inflammatory | Octanal, hexanal, and 2-pentylfuran | [ |
153 | Libanotis seseloides (Fisch. & C. A. Mey. Ex Turcz.) Turcz. | Xiangqin | Roots | Eliminating dampness, activating spleen, and promote blood circulation | Treatment of obstruction, dysentery, and sores | Edultin | [ |
154 | Libanotis sibirica (L.) C. A. Mey. | Beixiangqin | Roots | \ | \ | \ | [ |
155 | Libanotis spodotrichoma K. T. Fu | Changchongqi | Roots | Treating wind chill, dispelling wind dampness, and relieving pain | Bacteriostat, treatment of common cold due to wind-cold, generalized pain, and cough | Falcarinone, isoimperatorin, and xanthotoxin | [ |
156 | Ligusticopsis brachyloba (Franch.) Leute | Maoqianhu | Roots | Sudation, relieving pain, and dispelling wind | Treatment of headache, dizziness, arthralgia, and tetanus | α-pinene, β-pinene, and sabinene | [ |
157 | Ligusticopsis daucoides (Franch.) Lavrova & Kljuykov | Yubaogaoben | Roots | \ | \ | \ | [ |
158 | Ligusticopsis likiangensis (H. Wolff) Lavrova & Kljuykov | Meimaigaoben | Roots | \ | \ | \ | [ |
159 | ** Ligusticum chuanxiong Hort. | Chuanxiong | Roots, rhizome, stems, and leaves | Activating blood, relieving pain, and dispelling wind | Anti-inflammatory, antioxidant, and antitumor | Abietene, tetramethylpyrazine, and glucose | [ |
160 | ** Ligusticum jeholense Nakai et Kitag. | Liaogaoben | Roots and rhizome | Dispelling wind, dispersing cold, and eliminating dampness | Anti-inflammatory, sedative, and anti-ulcer | Ferulic acid, isoferulic acid, and daucosterol | [ |
161 | Ligusticum pteridophyllum Franch. | Jueyegaoben | Roots | Dispelling wind, relieving pain, and eliminating dampness | Treatment of cold due to wind-cold and migraine | Asaricin, β-sitosterol, and daucosterol | [ |
162 | ** Ligusticum sinense Oliv. | Baogen | Roots, rhizome, and tuber | Expelling wind-cold pathogens, eliminating dampness, and relieving pain | Anti-inflammatory, central inhibitory, and anti-thrombotic effects | 3-butylphthalide, opthalonide, and neopthalonide | [ |
163 | Ligusticum tenuissimum (Nakai) Kitagawa | Gaoben | Roots and rhizome | Used as ligusticum sinense Oliv. Treatment of wind chill, wind-cold headache, and diarrhea | Analgesia and sedation | Ferulic acid | [ |
164 | Meeboldia delavayi (Franch.) W. Gou & X. J. He | Dianqin | Roots | Treatment of cold, fever, and headache | \ | \ | [ |
165 | Nothosmyrnium japonicum var. Japonicum | Baibaoqin | Roots | \ | Sedation and analgesia | \ | [ |
166 | Nothosmyrnium japonicum var. Sutchuensis H. Boissieu | Chuanbaibaoqin | Roots | \ | Sedation and analgesia | \ | [ |
167 | ** Notopterygium franchetii H. De Boiss. | Kuanyeqianghuo | Roots and rhizome | Treating wind chill, dispelling wind, and eliminating dampness | Anti-inflammatory, analgesic, and antiviral | Nodakenin, ferulic acid, and bergamot lactone | [ |
168 | ** Notopterygium incisum Ting ex H. T. Chang | Qianghuo | Roots and rhizome | Treating wind chill, dispelling wind, and eliminating dampness | Anti-inflammatory, analgesic, and antiviral | Nodakenin, notopterol, and isoimperatorin | [ |
169 | Oenanthe benghalensis Benth. & Hook. | Shaohuashuiqin | Roots and whole plant | Used as Oenanthe javanica (Blume) DC. | Used as Oenanthe javanica (Blume) DC. | \ | [ |
170 | Oenanthe javanica (Blume) DC. | Shuiqin | Roots, stems, and whole plant | Heat clearing, detoxification, and removing liver-fire | Enhancing immunity, antiarrhythmic, and hypoglycemic | Phytic acid, γ-terpinene, and caryophyllene | [ |
171 | Oenanthe linearis subsp. Rivularis (Dunn) C. Y. Wu & F. T. Pu | Yeshuiqin | Roots and whole plant | Used as Oenanthe javanica (Blume) DC. | Used as Oenanthe javanica (Blume) DC. | \ | [ |
172 | Osmorhiza aristata var. Laxa (Royle) Constance & R. H. Shan | Xianggenqin | Roots | Treating wind chill and sudation, and relieving pain | \ | \ | [ |
173 | Ostericum citriodorum (Hance) C. C. Yuan & R. H. Shan | Geshanxiang | Roots and whole plant | Activating blood, dissolving stasis, and dispelling wind | Expectorant, anti-inflammatory, and bacteriostat | Isoapiole, panaxynol, and myristicin | [ |
174 | Ostericum grosseserratum (Maxim.) Kitag. | Dachishanqin | Roots | Activating spleen, dispersing cold, invigorating spleen, and replenishing qi | \ | Octanal, β-pinene, and myristic acid | [ |
175 | Ostericum sieboldii (Miq.) Nakai | Shanqin | Roots | \ | \ | \ | [ |
176 | Peucedanum dielsianum Fedde ex H. Wolff | Chuanfangfeng | Roots and rhizome | Relieving pain, dispelling wind, and eliminating dampness | \ | Isoimperatorin, Phellopterin, and 9-octadecenoic acid | [ |
177 | Peucedanum dissolutum (Diels) H. Wolff | Yanfeng | Roots | \ | \ | \ | [ |
178 | Peucedanum harry-smithii var. Subglabrum | Yingqianhu | Roots | Used as Peucedanum praeruptorum; alleviating asthma, reducing phlegm, and heat elimination | Treatment of bronchitis, hypertension, and coronary heart disease | Psoralen, bergapten, and xanthotoxin | [ |
179 | Peucedanum japonicum Thunb. | Binhaiqianhu | Roots | Clearing heat, relieving cough, and diuresis | Antipyresis, analgesia, and anti-inflammatory | Peucedanol, umbelliferone, and β-pinene | [ |
180 | Peucedanum ledebourielloides K. T. Fu | Huashanqianhu | Roots | \ | \ | \ | [ |
181 | Peucedanum longshengense R. H. Shan & M. L. Sheh | Nanlingqianhu | Roots | \ | \ | \ | [ |
182 | Peucedanum mashanense R. H. Shan & M. L. Sheh | Fangfeng | Roots | Expelling phlegm | \ | \ | [ |
183 | Peucedanum medicum Dunn | Huazhongqianhu | Roots | Expelling phlegm, alleviating asthma and cough, and arresting convulsion | Anticoagulation, antioxidant, and antibacterial | 2-methoxy-4-vinylphenol, p-menthan-1-ol, and cis-α-bisabolene | [ |
184 | Peucedanum medicum var. Gracile Dunn ex R. H. Shan & M. L. Sheh | Yanqianhu | Roots and rhizome | Expelling phlegm, alleviating asthma and cough, and arresting convulsion | Anticoagulation, antioxidant, and antibacterial | Isoimperatorin, phellorerin, and bergapten | [ |
185 | Peucedanum medicum var. Medicum | Huazhongqianhu | Roots and rhizome | Expelling phlegm, alleviating asthma and cough, and arresting convulsion | Anticoagulation, antioxidant, and antibacterial | 2-methoxy-4-vinylphenol, p-menthan-1-ol, and cis-α-bisabolene | [ |
186 | ** Peucedanum praeruptorum Dunn | Qianhu | Roots | Treating gas, clearing heat, and reducing phlegm | Anticoagulation, antioxidant, and anticancer | Praeruptorin A, praeruptorin B, and scopoletin | [ |
187 | Peucedanum shanianum F. L. Chen & Y. F. Deng | Hongqianhu | Roots | Relieving asthma, expelling phlegm, and treating spasmolysis | Anti-inflammatory, antiallergic, and anti-ulcer | Sinodielides A, deltoin, and (+)-pareruptorin A | [ |
188 | Peucedanum turgeniifolium H. Wolff/Peucedanum pulchrum | Yaqianhu | Roots and whole plant | Expelling phlegm, antibechic, and dispersing wind-heat | Smooth muscle spasmolysis | Turgenifolin A, turgenifolin B, and bergapten | [ |
189 | Peucedanum wawrae (H. Wolff) S. W. Su ex M. L. Sheh | Taishanqianhu | Roots | Antibechic and expelling phlegm | Analgesia, sedation, and anti-inflammatory | Peucedanocoumarin, d-laserpitin, and bergapten | [ |
190 | Peucedanum wulongense R. H. Shan & M. L. Sheh | Wulongqianhu | Roots | \ | \ | \ | [ |
191 | Phlojodicarpus sibiricus (Steph. Ex Spreng.) Koso-Pol. | Zhangguoqin | Roots | \ | \ | \ | [ |
192 | Physospermopsis alepidioides (H. Wolff & Hand.-Mazz.) R. H. Shan | Quanyedianxiong | Roots | \ | \ | \ | [ |
193 | Physospermopsis delavayi (Franch.) H. Wolff | Dianxiong | Roots | \ | \ | \ | [ |
194 | Pimpinella anisum L. | Huiqin | Fruits | Warming meridian and diuresis | Treatment of paralysis, facial paralysis, and migraine | Anisaldehyde, anisole, and (E)-anethole | [ |
195 | Pimpinella candolleana Wight & Arn. | Xingyefangfeng | Roots or whole plant | Warming spleen and stomach for dispelling cold, relieving pain, and dispelling wind | Relieving muscular spasm, antiviral, and antibacterial | α-zingiberene, pregeijerene, and β-elemene | [ |
196 | Pimpinella coriacea (Franch.) H. Boissieu | Geyehuiqin | Whole plant | Warming spleen and stomach for dispelling cold, dispelling wind, and eliminating dampness, and activating blood | \ | \ | [ |
197 | Pimpinella diversifolia DC. | Yiyehuiqin | Whole plant | Expelling phlegm, activating blood, relieving pain, and removing toxicity for detumescence | Anti-inflammatory, antitumor, and anti-tuberculosis | 1H-benzocycloheptene, sesquiphellandrene, and β-chamigrene | [ |
198 | Pimpinella diversifolia var. Diversifolia | Yiyehuiqin | Roots or whole plant | Invigorating stomach, dispersing accumulations, and antidiarrheic | Anti-inflammatory, antitumor, and anti-tuberculosis | 1H-benzocycloheptene, sesquiphellandrene, and β-chamigrene | [ |
199 | Pimpinella thellungiana H. Wolff | Yanghongshan | Roots or whole plant | Warming spleen and stomach for dispelling cold, benefiting qi and nourishing blood, and coordinating yin and yang | Hypotensive, hypolipidemic, and modulates and improves cellular immunity | Protocatechuic acid, gallic acid, and neochlorogenic acid | [ |
200 | Pleurospermopsis bicolor (Franch.) Jing Zhou & J. Wei | erselengziqin | Whole plant | Warming spleen and stomach for dispelling cold, benefiting qi and nourishing blood, and coordinating yin and yang | Hypotensive, antilipemic, and modulates and improves cellular immunity, antimicrobial | Chlorogenic acid, isochlorogenic acid A, and apigenin-7-O-β-D-glucuronopyranoside | [ |
201 | Pleurospermum aromaticum W. W. Sm. | fangxianglengziqin | Whole plant | \ | \ | \ | [ |
202 | Pleurospermum giraldii Diels | Taibaidiangaoben | Whole plant and seeds | Warming spleen, digesting food, and treating vaginal discharge | Inhibition of smooth muscle contraction and releasing intestinal smooth muscle spasm | Carvone, n-triactanol, and γ-sitosterol | [ |
203 | Pleurospermum rivulorum (Diels) K. T. Fu & Y. C. Ho | Shetouqianghuo | Roots or whole plant | Tonifying the kidney | \ | \ | [ |
204 | Pternopetalum leptophyllum (Dunn) Hand.-Mazz. | Baoyenangbanqin | Whole plant | \ | \ | \ | [ |
205 | Pternopetalum vulgare var. Vulgare | Wupiqing | Roots or whole plant | Treatment of lumbago | \ | \ | [ |
206 | Sanicula astrantiifolia H. Wolff ex Kretschmer | Wupifeng or xiaoheiyao | Whole plant | Tonifying the kidney and lung, treating tuberculosis and kidney vacuity lumbar pain | Antioxidant, antibacterial, and bacteriostat | Total flavonoids, rutin, and polysaccharides | [ |
207 | Sanicula caerulescens Franch. | Dafeijincao | Whole plant | Dispelling wind, treating phlegm, and promoting blood circulation for regulating menstruation | Expectorant, antibechic, and anti-inflammatory | Angelicin, isoferulaldehyde, and 12-hydroxybakuchiol | [ |
208 | Sanicula chinensis Bunge | Shanqincai | Whole plant | Detoxification, hemostasis, and treatment of throat pain | Antiviral | \ | [ |
209 | Sanicula elata Buch.-Ham. Ex D. Don | Sanyeqi | Whole plant | Used as Sanicula lamelligera | Antiviral | Oleanane saponins, saponins, and microelement | [ |
210 | Sanicula lamelligera Hance | Dafeijincao | Whole plant | Dispelling wind, treating phlegm, and promoting blood circulation for regulating menstruation | Expectorant, antibechic, and anti-inflammatory | Angelicin, isoferulaldehyde, and 12-hydroxybakuchiol | [ |
211 | Sanicula orthacantha S. Moore | Heiejiaoban | Roots or whole plant | Heat clearing and detoxifying, treatment of traumatic injury | \ | \ | [ |
212 | Sanicula orthacantha var. Brevispina H. Boissieu | Yajiaoqi | Whole plant | Heat clearing and detoxifying, treatment of traumatic injury | \ | \ | [ |
213 | ** Saposhnikovia divaricata (Turcz.) Schischk. | Fangfeng | Roots | Dispelling wind, removing dampness to relieve pain, and arresting convulsion | Analgesia, sedation, and anti-inflammatory | Prim-o-glucosylcimifugin, 5-O-methylvisamitol glycoside, and cimifugin | [ |
214 | Selinum cryptotaenium H. Boissieu | Linagshechuang | Roots | \ | \ | \ | [ |
215 | Semenovia montana Kamelin & V. M. Vinogr. | Lieyeduhuo | Roots | \ | \ | \ | [ |
216 | Seseli delavayi Franch. | Yunfangfeng | Roots | Dispelling wind, removing dampness, and relieving pain | \ | \ | [ |
217 | Seseli mairei var. Mairei | Yunfangfeng | Roots and rhizome | Dispelling wind, removing dampness, and relieving pain | Antipyretic, analgesic, and anti-inflammatory | Sphondin, bergapten, and isopimpinellin | [ |
218 | Seseli yunnanense Franch. | Chuanfangfeng | Roots and rhizome | Dispelling wind, removing dampness, and relieving pain | Antipyretic, analgesic, and anti-inflammatory | Falcarindiol, falcarinol, and glycerol monolinoleate | [ |
219 | Seselopsis tianschanica Schischk. | Xiguiqin | Roots | Treatment of fall injury, anemia, and other diseases | Treatment of nasopharynx cancer | \ | [ |
220 | Sium suave Walter | Caogaoben | Whole plant | Dispersing cold, relieving headache, and decreasing blood pressure | \ | \ | [ |
221 | Spuriopimpinella arguta (Diels) X. J. He & Z. X. Wang | Jianchidayeqin | Roots and whole plant | \ | \ | \ | [ |
222 | Tongoloa silaifolia (H. Boissieu) H. Wolff | Taibaisanqi | Roots | Stopping bleeding, relieving pain, and activating blood | Treatment of traumatic injury, trauma bleeding, and rheumatic pain | Suberosin, crenulatin, and isoimperatorin | [ |
223 | Tongoloa stewardii H. Wolff | Gulingdongeqin | Roots | \ | \ | \ | [ |
224 | Torilis japonica (Houtt.) DC. | Heshi | Fruits and roots | Lumbricide ascaricide and external antiphlogistic agent | \ | Essential oil | [ |
225 | Torilis scabra (Thunb.) DC. | Huananheshi | Fruits or whole plant | Activating blood, insecticide, and antidiarrheal | Bacteriostat | Cyclohexene, 6,6-dimethyl-bicyclo [3.1.1] heptane-2-carboxaldehyde, and endo-borneol | [ |
226 | Trachyspermum ammi (L.) Sprague. | Ayuwei | Fruits | Dispersing cold, relieving pain, and treating indigestion | Antibacterial, antimicrobial, and antifungal | thymol, ρ-cymene, and β-pinene | [ |
227 | Vicatia thibetica H. Boissieu | Xigui | Roots | Dispelling wind, eliminating dampness, and dispelling cold | Anti-fatigue, antioxidant, and enhancing immunity | Umbelliferone, bergapten, and ferulic acid | [ |
228 | Visnaga daucoides Gaertn. | Amiqin | Fruits | Treatment of coronary artery disease, such as coronary thrombosis | Treatment of renal colic, angina pectoris, and urinary calculi | Khellin, visnagin, and khellol glycoside | [ |
Note: * means the plant reported in “Pharmacopoeia of the People’s Republic of China (2020)”, ** means the plant roots used as medicine reported in “Pharmacopoeia of the People’s Republic of China (2020)” [
Quality markers in the 22 AMPs recorded in the “Pharmacopoeia of the People’s Republic of China” (2020) [
No./No. in |
Plant Species | Quality Markers | Classification | Biosynthetic Pathway |
---|---|---|---|---|
1/8 | Angelica biserrata | Osthole (1) and columbianadin (2) | Coumarins | Phenylpropanoids |
2/10 | Angelica dahurica | Imperatorin (3) and isoimperatorin (4) | Coumarins | Phenylpropanoids |
3/11 | Angelica dahurica cv. Hangbaizhi | (3) and (4) | Coumarins | Phenylpropanoids |
4/13 | Angelica decursiva | Nodakenin (5) | Coumarins | Phenylpropanoids |
5/20 | Angelica sinensis | Ferulic acid (6) and ligustilide (15) | Propenyl benzenes and phthalides | Phenylpropanoids and phthalides |
6/34 | Bupleurum chinense | Saikosaponin a (11) and saikosaponin d (12) | Triterpenes | Terpenes |
7/67 | Bupleurum scorzonerifolium | (11) and (12) | Triterpenes | Terpenes |
8/79 | Changium asiatica | Asiaticoside (13) and madecassoside (14) | Triterpenes | Terpenes |
9/80 | Changium smyrnioides | – | – | – |
10/83 | Changium monnieri | (1) | Coumarins | Phenylpropanoids |
11/94 | Daucus carota | – | – | – |
12/102 | Ferula fukanensis | – | – | – |
13/109 | Ferula sinkiangensis | – | – | – |
14/112 | Foeniculum vulgare | Trans-anethole (7) | Phenylpropene | Phenylpropanoids |
15/113 | Glehnia littoralis | – | – | – |
16/159 | Ligusticum chuanxiong | (6) and levistilide A (16) | Phenylpropanoids and phthalide | Phenylpropanoids and phthalides |
17/160 | Ligusticum jeholense | (6) | Phenylpropanoids | Phenylpropanoids |
18/162 | Ligusticum sinense | (6) | Phenylpropanoids | Phenylpropanoids |
19/167 | Notopterygium franchetii | (4), (5), and notopterol (8) | Coumarins | Phenylpropanoids |
20/168 | Notopterygium incisum | (4), (5), and (8) | Coumarins | Phenylpropanoids |
21/186 | Peucedanum praeruptorum | Praeruptorin A (9) and praeruptorin B (10) | Coumarins | Phenylpropanoids |
22/213 | Saposhnikovia divaricata | Prim-O-glucosylcimifugin (17) and 5-O-methylvisammioside (18) | Chromones | Chromones |
Note: “–” indicates there are no specific quality markers recorded in the “Pharmacopoeia of the People’s Republic of China” (2020) [
Classification of the 38 rhizomatous AMPs affected by BF.
No./No. in Table 1 | Plant Species | Classes | References | No./No. in Table 1 | Plant Species | Classes | References |
---|---|---|---|---|---|---|---|
1/4 | Angelica acutiloba (Siebold & Zucc.) Kitag. | (1) | [ |
20/109 | * Ferula sinkiangensis K. M. Shen | (3) | [ |
2/8 | ** Angelica biserrata (R. H. Shan & C. C. Yuan) C. C. Yuan & R. H. Shan | (1) | [ |
21/111 | Ferula teterrima Kar. & Kir. | (3) | [ |
3/10 | ** Angelica dahurica (Fisch. ex Hoffm.) Benth. & Hook. f. ex Franch. & Sav. | (1) | [ |
22/113 | ** Glehnia littoralis F. Schmidt ex Miq. | (2) | [ |
4/11 | ** Angelica dahurica cv. Hangbaizhi | (1) | [ |
23/121 | Heracleum hemsleyanum Diels | (1) | [ |
5/13 | ** Angelica decursiva (Miq.) Franch. & Sav. | (1) | [ |
24/126 | Heracleum rapula Franch. | (1) | [ |
6/14 | Angelica gigas Nakai | (2) | [ |
25/148 | Levisticum officinale W. D. J. Koch | (3) | [ |
7/19 | Angelica polymorpha Maxim. | (1) | [ |
26/149 | Libanotis buchtormensis (Fisch.) DC | (3) | [ |
8/20 | ** Angelica sinensis (Oliv.) Diels | (1) | [ |
27/150 | Libanotis iliensis (Lipsky) Korovin | (1) | [ |
9/26 | Anthriscus sylvestris (L.) Hoffm. | (3) | [ |
28/151 | Libanotis lancifolia K. T. Fu | (3) | [ |
10/34 | ** Bupleurum chinense DC. | (2) | [ |
29/153 | Libanotis seseloides (Fisch. & C. A. Mey. ex Turcz.) Turcz. | (1) | [ |
11/67 | ** Bupleurum scorzonerifolium Willd. | (2) | [ |
30/155 | Libanotis spodotrichoma K. T. Fu | (3) | [ |
12/80 | ** Changium smyrnioides H. Wolff | (2) | [ |
31/159 | ** Ligusticum chuanxiong Hort. | (2) | [ |
13/81 | Chuanminshen violaceum M. L. Sheh & R. H. Shan | (2) | [ |
32/160 | ** Ligusticum jeholense Nakai et Kitag. | (2) | [ |
14/82 | Cicuta virosa L. | (3) | [ |
33/162 | ** Ligusticum sinense Oliv. | (2) | [ |
15/96 | Daucus carota var. sativus Hoffm. | (1) | [ |
34/167 | ** Notopterygium franchetii H. de Boiss. | (2) | [ |
16/102 | Ferula feruloides (Steud.) Korovin | (3) | [ |
35/168 | ** Notopterygium incisum Ting ex H. T. Chang | (2) | [ |
17/103 | Ferula fukanensis K. M. Shen | (3) | [ |
36/186 | ** Peucedanum praeruptorum Dunn | (1) | [ |
18/106 | Ferula lehmannii Boiss. | (3) | [ |
37/195 | Pimpinella candolleana Wight & Arn. | (3) | [ |
19/108 | Ferula olivacea (Diels) H. Wolff ex Hand.-Mazz. | (3) | [ |
38/213 | ** Saposhnikovia divaricata (Turcz.) Schischk. | (1) | [ |
Note: (1) BF significantly affects the yield and quality, and the rhizomes or roots cannot be used for clinical applications; (2) BF differently affects the yield, but the rhizomes or roots can be used as medicine to some extent; and (3) BF has no significant effect on the yield and quality, and their rhizomes or roots are used as medicine. * means the plant reported in “Pharmacopoeia of the People’s Republic of China (2020)”, ** means the plant roots used as medicine reported in “Pharmacopoeia of the People’s Republic of China (2020)” [
Reported approaches for inhibiting BF in 25 AMPs.
Class | No./No. in Table 1 | Plant Species | Measure I |
Measure II |
Measure III |
Measure IV |
---|---|---|---|---|---|---|
(1) | 1/4 | Angelica acutiloba (Siebold & Zucc.) Kitag. | Seedling diameter [ |
Density of planted seedlings [ |
Paclobutrazol concentration [ |
\ |
(1) | 2/8 | ** Angelica biserrate (R. H. Shan & C. C. Yuan) C. C. Yuan & R. H. Shan | Seedling size and root length [ |
\ | \ | \ |
(1) | 3/10 | ** Angelica dahurica (Fisch. ex Hoffm.) Benth. & Hook. f. ex Franch. & Sav. | Seed quality and seed maturity degree [ |
Soil selection to avoid continuous cropping and fertile sticky soil, density of planted seedlings, and seeding time [ |
Rational application of fertilizer, and appropriate N, P, and K fertilizer [ |
Seven types of reproductive conversion genes, and constans-like genes [ |
(1) | 4/11 | ** Angelica dahurica cv. Hangbaizhi | Seed quality and seed maturity degree [ |
Soil selection to avoid continuous cropping and fertile sticky soil, density of planted seedlings, and seeding time [ |
Rational application of fertilizer, and appropriate N, P, and K fertilizer [ |
Seven types of reproductive conversion genes, and constans-like genes [ |
(1) | 5/13 | ** Angelica decursiva (Miq.) Franch. & Sav. | \ | \ | \ | \ |
(1) | 6/19 | Angelica polymorpha Maxim. | \ | \ | \ | \ |
(1) | 7/20 | ** Angelica sinensis (Oliv.) Diels | Seed maturity degree, seeding age, seeding weight, root diameter, and excellent variety [ |
Short day, storage temperature, and reasonable planting and cultivation [ |
Plant growth retardant [ |
Four pathways of genes for regulating early BF [ |
(1) | 8/96 | Daucus carota var. Sativus Hoffm. | Endogenous hormone content and different cultivars [ |
Temperature, short day, and seeding time [ |
\ | Two major genes: Bol1-1 and Bol1-2 [ |
(1) | 9/121 | Heracleum hemsleyanum Diels | \ | \ | \ | \ |
(1) | 10/126 | Heracleum rapula Franch. | \ | \ | \ | \ |
(1) | 11/150 | Libanotis iliensis (Lipsky) Korovin | \ | \ | \ | \ |
(1) | 12/153 | Libanotis seseloides (Fisch. & C. A. Mey. ex Turcz.) Turcz. | \ | \ | \ | \ |
(1) | 13/186 | ** Peucedanum praeruptorum Dunn | \ | Compact planting and seeding time [ |
\ | \ |
(1) | 14/213 | ** Saposhnikovia divaricata (Turcz.) Schischk. | \ | Density of planted seedlings [ |
\ | Differentially expressed genes associated with BF during early flowering, flower bud differentiation, and late flowering [ |
(2) | 15/14 | Angelica gigas Nakai | \ | \ | \ | \ |
(2) | 16/34 | ** Bupleurum chinense DC. | \ | Cut the flowers [ |
Temperature [ |
Flowering gene (BcSVP, BcPAF1, BcCO, and BcFT) [ |
(2) | 17/67 | ** Bupleurum scorzonerifolium Willd. | \ | \ | \ | \ |
(2) | 18/80 | Changium smyrnioides H. Wolff | \ | Cut the flowers [ |
\ | \ |
(2) | 19/81 | Chuanminshen violaceum M. L. Sheh & R. H. Shan | \ | \ | \ | \ |
(2) | 20/113 | ** Glehnia littoralis F. Schmidt ex Miq. | \ | Cut the flowers [ |
\ | \ |
(2) | 21/159 | ** Ligusticum chuanxiong Hort. | Asexual reproduction and tissue culture [ |
Cut the bolted stem [ |
\ | Transcriptome original data by Illumina sequencing technology [ |
(2) | 22/160 | ** Ligusticum jeholense Nakai et Kitag. | \ | Cut the flower [ |
\ | \ |
(2) | 23/162 | ** Ligusticum sinense Oliv. | \ | Cut the flower [ |
\ | \ |
(2) | 24/167 | ** Notopterygium franchetii H. de Boiss. | \ | Cut the flower [ |
\ | \ |
(2) | 25/168 | ** Notopterygium incisum Ting ex H. T. Chang | \ | Cut the flower [ |
\ | \ |
Note: ** means the plant roots used as medicine reported in “Pharmacopoeia of the People’s Republic of China (2020)” [
References
1. Wei, J.; Gao, Y.Z.; Zhou, J.; Liu, Z.W. Collection and sorting of medicinal plants in Chinese Apiaceae (Umbelliferae). China J. Chin. Mater. Med.; 2019; 44, pp. 5329-5335.
2. Yuan, C.Q. Ethnobotanical research on Umbelliferous plants in China. Chin. J. Ethnomed. Ethnoph.; 1999; 4, pp. 221–224+248.
3. Zhao, Z.L.; Yan, Y.P. Pharmaceutical Botany; 2nd ed. Scientific & Technical Publishers: Shanghai, China, 2020.
4. Cai, S.Q. Pharmacognostics; People’s Medical Publishing House: Beijing, China, 2011.
5. Li, B.; Zhang, W.H.; Gong, H.D. Researches on forage plant resources of Umbelliferae in Gansu. J. Mudanjiang Norm. Univ.; 2022; 2, pp. 57-61.
6. Liu, Y.; Liu, M.; Liu, M.Y. Resource plants of Apiaceae (Umbelliferae) in China. Terr. Nat. Res. Study; 2002; 4, pp. 76-78.
7. Kitashiba, H.; Yokoi, S. Genes for Bolting and Flowering. The Radish Genome; Nishio, T.; Kitashiba, H. Springer International Publishing: Cham, Swizerland, 2017; pp. 151-163.
8. Mutasa-Göttgens, E.S.; Qi, A.; Zhang, W.; Schulze-Buxloh, G.; Jennings, A.; Hohmann, U.; Müller, A.E.; Hedden, P. Bolting and flowering control in sugar beet: Relationships and effects of gibberellin, the bolting gene B and vernalization. AoB Plants; 2010; 2010, plq012. [DOI: https://dx.doi.org/10.1093/aobpla/plq012] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22476070]
9. Ning, K.; Han, Y.Y.; Chen, Z.J.; Luo, C.; Wang, S.L.; Zhang, W.J.; Li, L.; Zhang, X.L.; Fan, S.X.; Wang, Q. Genome-wide analysis of MADS-box family genes during flower development in lettuce. Plant Cell Environ.; 2019; 42, pp. 1868-1881. [DOI: https://dx.doi.org/10.1111/pce.13523] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30680748]
10. Wen, F.Y.; Zhang, B.; Liu, X.H.; Zhao, B.; Song, L.J.; Luo, Z.M. Research on bolting character and its genetic of Chinese cabbage. Acta Agric. Bor. Sin.; 2006; 21, pp. 68-71.
11. Zhao, D.Y.; Hao, Q.X.; Kang, L.P.; Zhang, Y.; Chen, M.L.; Wnag, T.L.; Guo, L.P. Advance in studying early bolting of Umbelliferae medicinal plant. China J. Chin. Mater. Med.; 2016; 41, pp. 20-23.
12. Lincoln, T.; Eduardo, Z. Plant Physiology; 5th ed. Sinauer Associates: New York, NY, USA, 2010.
13. Li, M.L.; Cui, X.W.; Jin, L.; Li, M.F.; Wei, J.H. Bolting reduces ferulic acid and flavonoid biosynthesis and induces root lignification in Angelica sinensis. Plant Physiol. Biochem.; 2022; 170, pp. 171-179. [DOI: https://dx.doi.org/10.1016/j.plaphy.2021.12.005]
14. Shang, Z.J. Collation and Annotation of Sheng Nong’s Herbal Classic; Academy Press: Beijing, China, 2008.
15. Li, S.Z. Compendium of Materia Medica; China Yanshi Publishing House: Beijing, China, 2012.
16. Flora of China. Flora of China; Science Press: Beijing, China, 2002.
17. Wang, G.Q. The Compilation of National Chinese Herbal Medicine; People’s Medical Publishing House: Beijing, China, 2014.
18. Pharmacopoeia of the People’s Republic of China. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2020.
19. Nanjing University of Chinese Medicine. Dictionary of Chinese Medicine; Shanghai Scientific & Technical Publishers: Shanghai, China, 2006.
20. Sun, G.R.; Xu, P.; Chang, K. GC/MS analysis of volatile components from Aegopodiumalpestre Seeds. J. Anhui Agric. Sci.; 2009; 37, pp. 18-19.
21. Zhou, H.; Lu, X.Y.; Tian, Y.; Huang, C.J. Advances in studies on chemical constituents and pharmacological activities of Apium L. Amino Acids Biot. Resour.; 2006; 28, pp. 6-9.
22. Chahal, K.K.; Kumar, A.; Bhardwaj, U.; Kaur, R. Chemistry and biological activities of Anethum graveolens L. essential oil: A review. J. Pharm. Phytochem.; 2017; 6, pp. 295-306.
23. Park, M.A.; Sim, M.J.; Kim, Y.C. Anti-photoaging effects of Angelica acutiloba root ethanol extract in Human dermal fibroblasts. Toxicol. Res.; 2017; 33, pp. 125-134. [DOI: https://dx.doi.org/10.5487/TR.2017.33.2.125] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28503261]
24. Yan, Z.K.; Niu, Z.D.; Pan, N.; Xu, G.J.; Yang, X.W. Analysis of exsential oils in roots and fruits of Angelica in Northeast China. China J. Chin. Mater. Med.; 1990; 15, pp. 35-37.
25. Sui, C.X. Study on chemical composition of Angelica serrata. Heilongjiang Med. J.; 2010; 23, 263.
26. Wu, Z.Y. Essentials of China Meteria Medica (I); Shanghai Scientific & Technical Publishers: Shanghai, China, 1988.
27. Zhou, L.L.; Zeng, J.G. Research advances on chemical constituents and pharmacological effects of Angelica pubescens. Mod. Chin. Med.; 2019; 21, pp. 1739-1748.
28. Meng, H.L.; Wen, G.S.; Yang, S.C. Research progress of the medicinal plant Heracleum apaensis. Res. Prac. Chin. Med.; 2008; 22, pp. 62-65.
29. Liu, M.; Hu, X.; Wang, X.; Zhang, J.J.; Peng, X.B.; Hu, Z.G.; Liu, Y.F. Constructing a core collection of the medicinal plant Angelica biserrata using genetic and metabolic data. Front. Plant Sci.; 2020; 11, 600249. [DOI: https://dx.doi.org/10.3389/fpls.2020.600249]
30. Bai, Y.; Li, D.H.; Zhou, T.T.; Qin, N.B.; Li, Z.L.; Yu, Z.G.; Hua, H.M. Coumarins from the roots of Angelica dahurica with antioxidant and antiproliferative activities. J. Funct. Foods; 2016; 20, pp. 453-462. [DOI: https://dx.doi.org/10.1016/j.jff.2015.11.018]
31. Choi, I.H.; Lim, H.H.; Song, Y.K.; Lee, J.W.; Kim, Y.S.; Ko, I.G.; Kim, K.J.; Shin, M.S.; Kim, K.H.; Kim, C.J. Analgesic and anti-inflammatory effect of the aqueous extract of root of Angelica Dahurica. Orient. Pharm. Exp. Med.; 2008; 7, pp. 527-533. [DOI: https://dx.doi.org/10.3742/OPEM.2008.7.5.527]
32. Lechner, D.; Stavri, M.; Oluwatuyi, M.; Pereda-Miranda, R.; Gibbons, S. The anti-staphylococcal activity of Angelica dahurica (Bai Zhi). Phytochemistry; 2004; 65, pp. 331-335. [DOI: https://dx.doi.org/10.1016/j.phytochem.2003.11.010] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14751304]
33. Saiki, Y.; Morinaga, K.; Okegawa, O.; Sakai, S.; Amaya, Y.; Ueno, A.; Fukushima, S. On the coumarins of the roots of Angelica dahurica Benth. et Hook. Yakugaku Zasshi; 1971; 91, pp. 1313-1317. [DOI: https://dx.doi.org/10.1248/yakushi1947.91.12_1313] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/5169217]
34. Wei, W.; Wu, X.W.; Deng, G.G.; Yang, X.W. Anti-inflammatory coumarins with short- and long-chain hydrophobic groups from roots of Angelica dahurica cv. Hangbaizhi. Phytochemistry; 2016; 123, pp. 58-68. [DOI: https://dx.doi.org/10.1016/j.phytochem.2016.01.006] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26775737]
35. Wei, W.; Yang, X.W.; Zhou, Y.Y. Chemical constituents from n-Butanol soluble parts of roots of Angelica dahurica cv. Hangbaizhi. Mod. Chin. Med.; 2017; 19, pp. 630-634.
36. Zhao, D.; Islam, M.N.; Ahn, B.R.; Jung, H.A.; Kim, B.W.; Choi, J.S. In vitro antioxidant and anti-inflammatory activities of Angelica decursiva. J. Ophthalmic Nurs. Technol.; 2012; 35, pp. 179-192. [DOI: https://dx.doi.org/10.1007/s12272-012-0120-0]
37. Ahn, M.J.; Lee, M.K.; Kim, Y.C.; Sung, S.H. The simultaneous determination of coumarins in Angelica gigas root by high performance liquid chromatography-diode array detector coupled with electrospray ionization/mass spectrometry. J. Pharm. Biomed. Anal.; 2008; 46, pp. 258-266. [DOI: https://dx.doi.org/10.1016/j.jpba.2007.09.020]
38. Lee, Y.Y.; Lee, S.; Jin, J.L.; Yun-Choi, H.S. Platelet anti-aggregatory effects of coumarins from the roots of Angelica genuflexa and A. gigas. Arch. Pharm. Res.; 2013; 26, pp. 723-726. [DOI: https://dx.doi.org/10.1007/BF02976681]
39. Gu, X.Y.; Zhang, H.Q.; Wang, N.H. The chemical constituents of root of Angelica laxifoliata Diels. J. Plant Resour. Environ.; 1999; 8, pp. 1-5.
40. Song, P.P.; Xu, Z.R.; Wang, N.H. Studies on the chemical constituents in roots of Angelica tianmuensis and A. megaphylla. J. Chin. Med. Mater.; 2010; 33, pp. 1249-1251.
41. Wang, Y. Optimization of extraction technology of ferulic acid from A. megaphylla. J. Jiangxi Univ. TCM; 2018; 30, pp. 97-100.
42. Sun, S.; Kong, L.Y.; Zhang, H.Q.; He, S.A. Structural determination of chromone from Angelica morri Hayata. Chin. J. Nat. Med.; 2005; 3, pp. 97-100.
43. Sun, S.; Liu, B.; Kong, L.Y.; Zhang, H.Q.; He, S.A. Chemical Study on Angelica morri Hayata. J. China Pharm. Univ.; 2002; 33, pp. 181-183.
44. Tang, L.X. Identification of pharmacokinetics of Angelica grosserrata Maximi. Strait Pharm. J.; 1999; 11, pp. 48-49.
45. Song, P.P.; Lv, Y.; Xu, Z.L.; Jiang, Q.; Wang, N.H. Chemical Constituents of Angelica nitida roots. J. Chin. Med. Mater.; 2014; 37, pp. 55-57.
46. Yang, Y.; Zhang, Y.; Ren, F.X.; Yu, N.J.; Xu, R.; Zhao, Y.M. Chemical constituents from the roots of Angelica polymorpha Maxim. Acta Pharm. Sin.; 2013; 48, pp. 718-722.
47. Zhan, Y.H. Chinese Materia Medica Resources in Shennongjia; Hubei Science and Technology Press: Wuhan, China, 1994; 418.
48. Kataki, M.S.; Kakoti, B.B. Women’s ginseng (Angelica sinensis): An ethnopharmacological dossie. Curr. Tradit. Med.; 2015; 1, pp. 26-40. [DOI: https://dx.doi.org/10.2174/2215083801999150527114546]
49. Upton, R. American Herbal Pharmacopoeia and Therapeutic Compendium: Dang Gui Root-Angelica Sinensis (Oliv.); American Herbal Pharmacopoeia and Therapeutic Compendium: Scotts Valley, CA, USA, 2003.
50. Zhou, A.L.; Du, F.M. Separation of coumarin components from Angelica omeiensis root. Chin. Trad. Herb. Drugs.; 1982; 13, pp. 6-8.
51. Rao, G.X.; Liu, Q.X.; Dai, Z.J.; Yang, Q.; Dai, W.S. Textual research and discussing mlodern variety of Peucedanum praeruptorum Dunn, Chinese herb. J. Yunnan Coll. Tradit. Chin. Med.; 1995; 18, pp. 1–6+11.
52. Tan, H.; Ma, C.Y.; Geng, Y. Advancement in studies of chemical constituents and pharmacological activities of Anthriscus sylvestris. Chin. Arch. Tradit. Chin. Med.; 2017; 35, pp. 1194-1196.
53. Liu, Y.S. The research and function of Oenanthe javanice. J. Sichuan TCM; 2004; 22, pp. 25-26.
54. Marongiu, B.; Piras, A.; Porcedda, S.; Falconieri, D.; Maxia, A.; Frau, M.A.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L. Isolation of the volatile fraction from Apium graveolens L. (Apiaceae) by supercritical carbon dioxide extraction and hydrodistillation: Chemical composition and antifungal activity. Nat. Prod. Res.; 2012; 27, pp. 1521-1527. [DOI: https://dx.doi.org/10.1080/14786419.2012.725402]
55. Zhang, H.Q.; Yuan, C.Q.; Wang, N.H. The chemical constituents of the root of Archangelica brevicaulis (Rupr.) Rchb. J. Plant Resour. Environ.; 1999; 8, pp. 22-25.
56. Pan, S.L.; Shun, Q.S.; Bai, Q.M. The Coloured Atlas of the Medicinal from Genus Bupleurum in China; Shanghai Scientific and Technological Literature Press: Shanghai, China, 2002.
57. Yang, Z.Y.; Liu, S.F.; Chao, Z.; Pan, S.L. The content of saikosaponin a, c and d in four species of Bupleurum in Xinjiang by HPLC. China J. Chin. Mater. Med.; 2008; 33, pp. 460-461.
58. Wei, X.M.; Yan, H.; Lu, Y.Y.; Ma, S.Y.; Cheng, X.L.; Wei, F. HPLC simultaneous determination of 6 main saponins in Bupleurum bicaule Helm. J. Pharm. Anal.; 2018; 38, pp. 618-622.
59. Zhu, Z.J.; Pan, R.L.; Si, J.Y.; Fu, Y.; Huang, Q.Q. Study on the chemical constituents of Bupleurum bicaule Helm. Nat. Prod. Res. Dev.; 2008; 20, pp. 833-835.
60. Jin, H.F.; Jiang, Y.; Luo, S.Q. Studies on the chemical constituents of roots of Bupleurum longicaule Wall. ex DC. var. francheti de Boiss and B. chaishoui Shan et Sheh. China J. Chin. Mater. Med.; 1996; 21, pp. 739–741+762.
61. Zhu, Z.B.; Liang, Z.S.; Han, R.L.; Dong, J.E. Growth and saikosaponin production of the medicinal herb Bupleurum chinense DC. under different levels of nitrogen and phosphorus. Ind. Crops. Prod.; 2009; 29, pp. 96-101. [DOI: https://dx.doi.org/10.1016/j.indcrop.2008.04.010]
62. Zhu, Z.B.; Liang, Z.S.; Han, R.L.; Wang, X. Impact of fertilization on drought response in the medicinal herb Bupleurum chinense DC.: Growth and saikosaponin production. Ind. Crops. Prod.; 2009; 29, pp. 629-633. [DOI: https://dx.doi.org/10.1016/j.indcrop.2008.08.002]
63. Huang, H.Q.; Wang, X.H.; Fu, H.; Wang, Y.; Yang, S.H. Research progress on medicinal plant resources of Bupleurum L. Chin. Tradit. Herb. Drugs; 2017; 48, pp. 2989-2996.
64. Ou, X.L.; Huang, T.Y. Research progress on chemical constituents of Bupleurum. J. Chin. Med. Mater.; 2021; 44, pp. 749-755.
65. Li, G.H.; Luo, Y.Y.; Wang, Y.; Yuan, C.Q.; Wang, N.H. Analysis of saikosaponins in medicinal Bupleurum spp. J. Plant Resour. Environ.; 1996; 5, pp. 59-60.
66. Shih, Y.C.; Lee, L.T.; Hu, N.Y.; Tong, T.S. Method for Treating or Relieving Inflammatory Bowel Disease. U.S. Patent; 2013022694-A1, 24 January 2013.
67. Liu, Z.B.; SUn, Y.S.; Wang, J.H.; Li, S.H.; Huang, H.M. HPLC detemnation of saikosaponins a, c, and d in different parts of Bupleurum falcatum. Chin. J. Pham. Anal.; 2011; 31, pp. 225-227.
68. Ma, X.C.; Chen, S.P.; Wang, J.H.; Li, J.Y.; Xie, Y.L. Planting density oa affects dry material accumulation and saikosaponin contents of Bupleurum falcatum L. J. Shandong Agric. Univ. (Nat. Sci.).; 2011; 42, pp. 65-69.
69. Feng, S.J. Brief Report on Chemical Constituents of Bupleurum chinensis. Chin. Tradit. Herb. Drugs; 1981; 12, 30.
70. Zhang, G.X.; Wang, H.; Yin, X.; Kong, W.J.; Wang, Q.L.; Chen, Y.; Wei, J.H.; Liu, J.X.; Guo, X.W. Characterization of the complete chloroplast genome of Bupleurum hamiltonii N. P. Balakr. (Apiaceae) and its phylogenetic implications. Mitochondrial DNA B; 2021; 6, pp. 447-449. [DOI: https://dx.doi.org/10.1080/23802359.2020.1870902] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33628883]
71. Liu, L.J.; Tian, Z.K.; Wang, X.K. Study on volatile oil composition of Bupleurum komarovianum Lincz. Chin. Pharm. J.; 1993; 28, 239.
72. Tian, Z.K.; Ma, Y.L.; Liu, L.J.; An, F.T.; Wang, X.K.; Wang, L. Studies on the saponin components of Bupleurum Komarovianum Lincz. J. Shenyang Coll. Pharm.; 1993; 10, pp. 82–84+93.
73. Shi, B.; Liu, W.; Wei, S.P.; Wu, W.J. Chemical composition, antibacterial and antioxidant activity of the essential oil of Bupleurum longiradiatum. Nat. Prod. Commun.; 2010; 5, pp. 1139-1142. [DOI: https://dx.doi.org/10.1177/1934578X1000500734] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20734959]
74. Yan, J.; Wei, Y.F.; Gu, R.; Kang, M. Content determination of saikosaponin a, c, d in overground and underground part of 4 species of Bupleurum Radix from Sichuan by HPLC. Chin. J. Exp. Tradit. Med. For.; 2014; 20, pp. 73-76.
75. Yan, J.; Wei, Y.F.; Zhou, Y.L.; Long, F.; Kang, L.; Chen, W.; Xu, Y. Study on HPLC characteristic map of the overground part of Bupleurum from Sichuan. J. Chin. Med. Mater.; 2019; 42, pp. 773-777.
76. Yan, J.; Yan, Y.M.; Wei, Y.F.; Wu, W.J. Chemical constituents of acrial part of Bupleunum malconense. Chin. Tradit. Herb. Drugs; 2017; 48, pp. 1282-1285.
77. Aoyagi, H.; Kobayashi, Y.; Yamada, K.; Yokoyama, M.; Kusakari, K.; Tanaka, H. Efficient production of saikosaponins in Bupleurum falcatum root fragments combined with signal transducers. Appl. Microbiol. Biotechnol.; 2001; 57, pp. 482-488. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11762592]
78. Ma, Y.; Liu, K.K.; Pu, X.; Cui, Z.J.; Wang, Z.H.; Zhao, W.L.; Guo, Y.X.; Jin, L. Investigation on the Resources of Bupleurum in Central Gansu. Mod. Chin. Med.; 2022; 24, pp. 2119-2125.
79. Guo, S.Q.; Chi, X.X.; Bai, Y.J.; Wang, H.G. Determination of saikosaponin d in Bupleurum Sibircum Vest by HPLC. Chin. J. Ethnomed. Ethnoph.; 2020; 29, pp. 44-47.
80. Song, Z.Z.; Jia, Z.J. Studies on the Chemical Components of Bupleurum Sibiricum Vest (I). J. Lanzhou Univ. (Nat. Sci.); 1992; 28, pp. 99-103.
81. Liu, L.Z.; Ji, X.J.; Xu, L.X.; Zhang, Y.; Zhang, F.J.; Li, D.C.; Ya, B.Q. Quality standards of Bupleuri Smithii Radix. Chin. J. Exp. Tradit. Med. For.; 2014; 20, pp. 105-109.
82. Zhang, T.T.; Gao, S.; He, J.H. Research progress on chemical composition and pharmacological action of Bupleurum smithii Wolff. J. Chin. Med. Mater.; 2013; 36, pp. 1542-1545.
83. Li, Y.L.; Han, Q.; Lv, J.X.; Wang, J.X.; Zhao, Y.Y. Study on chemical constituents of the essential oil of Bupleurum yinchowense. Chin. Tradit. Herb. Drugs.; 1997; 28, pp. 650-651.
84. Liu, X.L.; Shang, Z.J. Reopening discussion on original plants of “Yinzhouchaihu”. J. Chin. Med. Mater.; 1994; 17, pp. 40–42+56.
85. Pang, M.; Cui, X.M. Extraction of Carum carvi L. essential oil by supercritical carbon dioxide and its composition analysis. Food Mach.; 2022; 38, pp. 175–179+194.
86. Shen, N.D.; Wei, M.Q.; Li, N. Progress of Carum carvi L.’s economic value and researching on it’s development and utilization. J. Qinghai Norm. Univ. (Nat. Sci.); 2010; 1, pp. 54-56.
87. Xiang, J.M.; Xiao, W.; Xu, L.J.; Xiao, P.G. Research progress in Centella asiatica. Mod. Chin. Med.; 2016; 18, pp. 233–238+258.
88. Ji, X.; Xuan, H.B.; Huang, B.K. Overview of studies on active constituents and pharmacological actions of Changium smyrnioides. J. Pharm. Pract.; 2015; 33, pp. 102–105+137.
89. Chen, D.D.; Peng, C. Research progress of Chuanmingshen violaceum. China Pharm.; 2011; 20, pp. 1-2.
90. Chen, H.L.; Su, X.L.; Deng, Y.; Yu, T.; Zhang, H.B.; Zhang, M. Chemical constituents from the bioactive extract of Chuanminshen violaceum. Chin. Tradit. Pat. Med.; 2008; 30, pp. 1334-1336.
91. Fan, J.; Feng, H.B.; Yu, Y.; Sun, M.X.; Liu, Y.R.; Li, T.Z.; Sun, X.; Liu, S.J.; Sun, M.D. Antioxidant activities of the polysaccharides of Chuanminshen violaceum. Carbohydr. Polym.; 2017; 157, pp. 629-636. [DOI: https://dx.doi.org/10.1016/j.carbpol.2016.10.040] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27987971]
92. Wang, H.M.; Feng, J. Study on chemical components of volatile oil of Cicuta virosa L. root. J. Tianjin Med. Univ.; 2000; 6, pp. 376-377.
93. Tian, B.; Qu, X.L.; Lin, Y.P.; Yuan, Q.H.; Song, Y. Research progress on chemical constituents and pharmacological effects of Cnidium monnieri (L.) Cuss. Pharm. Clin. Chin. Mater. Med.; 2020; 11, pp. 70–73+80.
94. Wang, Y.P.; Wang, Y.H.; Zhan, Z.L.; Li, G. Herbal textual research on Ligustici Rhizoma et Radix in famous classical formulas. Chin. J. Exp. Tradit. Med. For.; 2022; 28, pp. 68-81.
95. Xue, Y.C.; Wang, N.H.; Zhang, H.Q. Studies on the chemical constituents of the root of Conioselinum vaginatum (Spreng.) Thell. J. China Pharm. Univ.; 1996; 27, pp. 267-270.
96. Ran, X.D. Chinese Medicine; Harbin Publishing House: Harbin, China, 1993; 1226.
97. Vetter, J. Poison hemlock (Conium maculatum L.). Food Chem. Toxicol.; 2004; 42, pp. 1373-1382. [DOI: https://dx.doi.org/10.1016/j.fct.2004.04.009]
98. Mandal, S.; Mandal, M. Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity. Asian Pac. J. Trop. Biomed.; 2015; 5, pp. 421-428. [DOI: https://dx.doi.org/10.1016/j.apjtb.2015.04.001]
99. Li, S.H.; Niu, Y.Y. Study on chemical constituents in Cryptotaenia japonica. Chin. Tradit. Herb. Drugs; 2012; 43, pp. 2365-2368.
100. Lu, J.; Zhang, J.Q.; Zhao, P.R.; Liu, T.; Wen, Y.; Li, Z.H. Study on chemical compositions, antioxidant activity and antibacterial activity of essential oil from Cryptotaenia japonica. Non. For. Res.; 2017; 35, pp. 100-104.
101. Gachkar, L.; Yadegari, D.; Rezaei, M.B.; Taghizadeh, M.; Astaneh, S.A.; Rasooli, I. Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chem.; 2007; 102, pp. 898-904. [DOI: https://dx.doi.org/10.1016/j.foodchem.2006.06.035]
102. Zhong, W.J.; Cao, L.; Zhong, W.H.; Liang, J.; Zhong, G.Y. Analysis of varieties and standards of Umbelliferae medicinal plants used in Tibetan medicine. World Sci. Tech./Mod. Tradit. Chin. Med. Mat. Med.; 2016; 18, pp. 582-589.
103. Cui, C.Y.; Xiao, L.; Yang, Y.T.; Li, Q. Research progress in chemical constituents and pharmacological activities of Carotae fructus. Liaoning Chem. Ind.; 2020; 49, pp. 651-654.
104. Wu, Y.; Xu, Z.L.; Li, H.; Meng, X.Y.; Bao, Y.L.; Li, Y.X. Components of essential oils in different parts of Daucus carota L. var. sativa Hoffm. Chem. Res. Chin. Univ.; 2006; 22, pp. 328-334. [DOI: https://dx.doi.org/10.1016/S1005-9040(06)60109-8]
105. Guan, L.L.; Pang, Y.X.; Zhang, Y.B.; Yu, F.L.; Zhang, X.R.; Chen, Z.X. Research progress on Eryngium foetidum L.—A Chinese minority medicine. Chin. J. Trop. Agric.; 2013; 33, pp. 23-26.
106. Sun, T.Z.; Jia, Y.M.; Bao, Z.Y. Recent clinical application and development suggestions of Ferula breals kuan. China Int. TCM Expo. TCM Acad. Exch. Conf.; 2003; 2, pp. 59-60.
107. Yang, X.W. Bioactive Material Basis of Medicinal Plants in Genus Ferula. Mod. Chin. Med.; 2018; 20, pp. 123-144.
108. Xinjiang Institute Biological Soil Desert Research. Medicinal Flora of Xinjiang; Place Xinjiang People’s Publishing House: Urumchi, China, 1977; pp. 116-117.
109. Yang, M.H.; Tang, D.P.; Sheng, P. Research progress of Ferula ferulaeoides. Chin. J. Mod. Appl. Pharm.; 2020; 37, pp. 2031-2041.
110. Aybek, R.; NIlufar, M.; Keyser, S. Determination of volatile oil and ferulic acid in different parts of wild Ferula sinkiangensis K. M. Shen and Ferula fukanensis K. M. Shen Cultivars. Med. Plant; 2018; 9, pp. 36-38.
111. Li, J.; Xu, H.Y.; Jia, X.G.; Tian, S.G. Research progress on chemical constituents and biological activities of Ferula L. J. Xinjiang Med. Univ.; 2012; 35, pp. 1159-1161.
112. Zhang, Y.L.; Kai, S.; Su, L.M.; Wang, G.P. Advances in studies of Ferula fukanensis. J. Xinjiang Univ. (Nat. Sci. Ed.).; 2007; 24, pp. 156-159.
113. Li, X.Y.; Li, G.Y.; Wang, H.Y.; Wang, Y.; Wang, J.H. Chemical constituents from FerulaLehmannii Boiss. Mod. Chin. Med.; 2010; 12, pp. 17-20.
114. Huang, Y.T.; Yue, L.J.; Shen, X.Y.; Wang, K.; Liu, C.L. Chemical constituents and pharmacological activities of Ferula sinkiangensis K.M. Shen: Research advances. J. Int. Pharm. Res.; 2017; 44, pp. 495-499.
115. Lai, X.H.; Yang, X.R. Research progress on endangered medicinal plants Ferula sinkiangensis. Mod. Agric. Sci. Technol.; 2022; 11, pp. 43–47+51.
116. Yang, J.R.; Li, G.Q.; Li, Z.H.; Qin, H.L. Chemical constituents from Ferula teterrima. Nat. Prod. Res. Dev.; 2006; 18, pp. 246-248.
117. Su, H.H.; Zhan, L.L.; Ma, J.S. Extraction, component analysis of volatile oil from Foeniculi Fructus and its application in animal husbandry. Heilongjlang Anim. Sci. Vet. Med.; 2022; 15, pp. 37–40+46.
118. Pavela, R.; Žabka, M.; Bednář, J.; Tříska, J.; Vrchotová, N. New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.). Ind. Crops Prod.; 2016; 83, pp. 275-282. [DOI: https://dx.doi.org/10.1016/j.indcrop.2015.11.090]
119. Ren, B.W.; Cai, X.T.; Li, D.L. Research progress on chemical constituents and pharmacological effects of Glehnia littoralis. Light Text. Ind. Fujian Light Text Ind. Fujian; 2022; 8, pp. 9-17.
120. Gao, B.X.; Lan, Z.Q.; Deng, J.J.; Wu, T.T.; Man, X.K.; Lu, X.M. HPLC fingerprint of Heracleum candicans roots. Chin. J. Exp. Tradit. Med. For.; 2015; 21, pp. 61-63.
121. Du, X.; Wang, Y.P.; Qian, Z.X.; Yang, H.J.; Liu, H.H.; Zhan, Z.L. Herbal textual research on Angelicae Pubescentis Radix and Notopterygii Rhizoma et Radix in famous classical formulas. Chin. J. Exp. Tradit. Med. For.; 2023; 9, pp. 68-83.
122. Zhao, Y.; He, X.J.; Zhang, Q.Y.; Ma, Y.H.; Miao, A.Q. Anatomical studies on medicinal part of Heracleum. J. China West Norm. Univ. (Nat. Sci.).; 2004; 25, pp. 63-67.
123. Ma, X.; Song, P.S.; Zhu, J.R.; Zhao, J.B.; Zhang, B.C. Analysis of volatile oil from Radix Angelicae Pubescentis and Radix Heraclei in Gansu by GC-MS. Chin. J. Mod. Appl. Pharm.; 2005; 22, pp. 44-46.
124. Zhang, C.Y.; Zhang, B.G.; Yang, X.W. GC-MS analysis of essential oil from the radix of Heracleum hemsleyanum Diels. Res. Inf. Tradit. Chin. Med.; 2005; 7, pp. 9-12.
125. Sun, H.D. The study of the Chinese drugs of Umbelliferae V The chemical components of Heracleumt henryi Woff. Acta Bot. Yunnancia; 1982; 3, pp. 279-281.
126. Feng, J.T.; Zhu, M.J.; Yu, P.R.; Li, Y.P.; Han, J.H.; Hao, H.J.; Ding, H.X.; Zhang, X. Screening on the resouses of botanical fungicides in Northwest China. J. Northwest A&F Univ. (Nat. Sci. Ed.).; 2002; 30, pp. 129–133+137.
127. Zhang, Z.X.; Feng, J.T.; Zhang, X. GC-MS analysis of volatile oils from Heracleam moelendorffii. Appl. Chem. Ind.; 2006; 35, pp. 809–810+813.
128. IMMPUMCHCollege, I.o.M.M.C.A.o.M.S.P.U.M. Chinese Traditional Medicine; People’s Medical Publishing House: Beijing, China, 1982.
129. Chinese Materia Madica. Chinese Materia Madica; Shanghai Scientific & Technical Publishers: Shanghai, China, 1999.
130. Sun, H.D.; Lin, Z.W.; Niu, F.D. The study of the Chinese drugs of Umbelliferae I, Study on chemical composition of Angelrca apaensis Shan, Heracleum rapula, and Heracleum scabriduum. Acta Bot. Sin.; 1978; 20, pp. 244-254.
131. Wei, C.C.; Guan, W.J.; Hu, D.D.; Zhou, J.; Li, X. Chemical constituents from Heracleum scabridum. J. Chin. Med. Mater.; 2017; 40, pp. 1105-1108.
132. Lin, Z.W.; Gao, L.; Rao, G.X.; Pu, F.D.; Sun, H.D. Coumarins of Heracleum stenopterum. Acta Bot. Yunnancia; 1993; 15, pp. 315-316.
133. Rao, G.X.; Wu, Y.; Dai, W.S.; Pu, F.D.; Lin, Z.W.; Sun, H.D. Coumarins of Heracleum yunngningense Hand.-Mass. China J. Chin. Mater. Med.; 1993; 18, pp. 736–737+763.
134. Dong, G.T.; Song, L.K.; Tang, H.; Wang, Y.; Wang, X.N. Determination of asiaticoside and madecassoside in Hydrocotyle. Chin. Wild Plant Res.; 2012; 31, pp. 47-50.
135. Xiong, J.; She, J.M.; Liu, H.W.; Cao, L.Q.; Xiao, Y. Advances of chemical constituents and pharmacological effects of Hydrocotyle genus. Asia-Pac. Tradit. Med.; 2019; 15, pp. 179-183.
136. Xu, Y.F.; Chen, Y.H.; Yang, S.P. Review of chemical constituents and pharmacological effects of Hydrocotyle genus. Fujian Sci. Tech. Trop. Crops; 2013; 38, pp. 59-61.
137. Central Information Station of Chinese Herbal Medicine of State Medicine Administration. Handbook of Effective Components of Plant Medicine; People’s Medical Publishing House: Beijing, China, 1986.
138. Kang, W.Y.; Zhao, C.; Mu, S.Z.; Yang, X.S.; Hao, X.S. Chemical composition analysis of volatile oil of Hydrocotyle sibthorpioides Lam. Chin. Tradit. Herb. Drugs; 2003; 34, pp. 116-117.
139. He, X.P.; Wang, X.Y. Research progress of Tibetan materia medica Pleurospermum hookerivar. Asia-Pac. Tradit. Med.; 2018; 14, pp. 22-24.
140. Yuan, M.; Li, Y.Z.; Xu, M.; Zhao, X.H. Pharmacodynamic study on anti-inflammatory and analgesic effects of Tibetan medicine Pleurospermum hookeri var. thomsonii. Nat. Prod. Res. Dev.; 2012; 24, pp. 972-975.
141. Zhao, L.Q. Research advancementon terpenoids in Ligusticum and their biological activity. Lishizhen Med. Mater. Med. Res.; 2006; 17, pp. 16-18.
142. Li, T.; Wang, T.Z.; Wu, W.B. Plants of the Pleurospermum with potential medicinal value. J. Chin. Med. Mater.; 2002; 25, pp. 12-13.
143. Liu, Y.; Wei, H.Y.; Yao, S.H.; Zheng, X.Z. Comparison of pharmacological effects of traditional Chinese medicine Qianhu expectorant. Hunan Guiding J. TCMP; 1997; 3, pp. 40-42.
144. Wang, H.H.; Hu, S.F. Research in Levisticum officinale Koch. China Med. Her.; 2011; 8, pp. 11-12.
145. Ge, X.X.; Rao, C.; Bian, M.; Cao, L. Analysis of essential oil from the roots of Libanotis buchtormensis and antibacterial activity test. J. Nanjing Norm. Univ. (Eng. Technol. Ed.).; 2015; 15, pp. 67-72.
146. Tang, X.S.; Yang, D.M.; Zhu, K.X. Analysis of essential oil from Libanotis laticalycina Shan et Sheh. by CC-MS. China J. Chin. Mater. Med.; 1992; 17, pp. 40–42+48.
147. Wang, J.H.; Lou, Z.C. Plant origin of commercial drug Saposhnikovia divaricata. J. Tradit. Chin. Med. Bull.; 1988; 13, pp. 9–10+62.
148. Huang, Y.Z.; Pu, F.D. Study on the chemical components of the essential oil from Ligusticum brachylobum Franch. China J. Chin. Mater. Med.; 1990; 15, pp. 38–39+63.
149. Yunnan Institute of Materia Medica. Illustrated Handbook for Natural Medicine in Yunnan (IV); Yunnan Science and Technology Press: Kunming, China, 2007; 93.
150. Li, X.F.; Qiu, B. Studies on pharmacognosy of radix Ligusticum Brachylobum Franch. J. Guangzhou Univ. TCM; 2020; 37, pp. 1151-1154.
151. Zhang, X.J.; Zhang, Y.L.; Zuo, D.D. Research progress on chemical constituents and pharmacological effects of Ligusticum chuanxiong Hort. Inf. Tradit. Chin. Med.; 2020; 37, pp. 128-133.
152. Lu, X.Y.; Sun, Q.S.; Zhang, M.N.; Zhao, J.Z. Isolation and identification of chemical constituents from rhizome and root of Ligusticumn jeholense Nakaiet Kitag. J. Shenyang Pharm. Univ.; 2010; 27, pp. 434–435+439.
153. Zhang, M.F.; Shen, Y.Q. Study on pharmacology and meridians of Ligusticum. Shanghai Pharma.; 2006; 27, pp. 415-418.
154. Rao, G.X.; Dai, Y.H.; Wang, L.X.; Cai, F.; Lin, Z.W.; Sun, H.D. Chemical constituents from Ligusticum pteridophyllum. Acta Bot. Yunnanica; 1991; 13, pp. 233-236.
155. Tang, Z. Studies on chemical constituents and pharmacology of Ligusticum sinense Oliv. Guide China Med.; 2011; 9, pp. 34-35.
156. Wang, W.N.; Sun, Q.S.; Liang, J.; Zhang, Z.C. A pharmacognostic study of Ligusticum tenuissimum (nakai) Kitag. J. Shenyang Coll. Pharm.; 1991; 8, pp. 182-187.
157. Tang, G.L.; Huang, F.; Gao, T.Y.; Wu, Q.M.; Yu, W.; Qiu, H.; Jiang, G.H. Simultaneous determination of five components in Notopterygium franchetii H. de Boiss. by HPLC. Pharm. Clin. Chin. Mater. Med.; 2018; 9, pp. 14-17.
158. Zhang, L.L. Pharmacological effects and application of traditional Chinese medicine Notopterygium. China Contin. Med. Educ.; 2015; 7, pp. 191-192.
159. Ye, H.G.; Li, C.Y.; Ye, W.C.; Zeng, F.Y.; Liu, F.F.; Liu, Y.Y.; Wang, F.G.; Ye, Y.S.; Fu, L.; Li, J.R. Common Chinese Materia Medica, Medicinal Angiosperms of Umbelliferae. Common Chinese Materia Medica: Volume 6; Ye, H.G.; Li, C.Y.; Ye, W.C.; Zeng, F.Y. Springer Nature: Singapore, 2022; pp. 199-296.
160. Guo, X.Q.; Wei, L.H.; Dai, T.T.; Wu, Q. The detection of the chemical components in Oenanthe javanica and its hypoglycemic activity. Food Mach.; 2017; 33, pp. 155–157+173.
161. Li, Y.T.; Zhu, C.H.; Sun, F.F.; Wei, X. Modern research progress of Ostericum citriodorum. Guangdong Chem. Ind.; 2020; 47, pp. 97-100.
162. Tian, W.Y.; Lan, F.; Li, S.P.; Luo, J.Y. Preliminary pharmacological study of Angelicae citriodora Hance. Chin. Pharmacol. Bull.; 1989; 5, 249.
163. Zhang, J.; Li, R.M.; Wei, G. Study on chemical constituents of volatile oil of Ostericum citriodorum. Chin. Tradit. Herb. Drugs; 2009; 40, pp. 1221-1222.
164. Xue, Y.C.; Xian, Q.M.; Zhang, H.Q. Chemical constituents of the essential oil from the root of Ostericum grosseserratum (Maxim.) Kitag. J. Plant Resour. Environ.; 1995; 4, pp. 61-63.
165. Xue, Y.C.; Zhang, H.Q.; Wang, N.H.; Yuan, C.Q. Studies on chemical constituents of the roots of Ostericum grosseserratum (Maxim.) Kitag. China J. Chin. Mater. Med.; 1992; 17, pp. 354–356+383.
166. Ebadollahi, A. Plant essential oils from Apiaceae family as alternatives to conventional insecticides. Ecol. Balk.; 2013; 5, pp. 149-172.
167. Sousa, R.M.O.F.; Cunha, A.C.; Fernandes-Ferreira, M. The potential of Apiaceae species as sources of singular phytochemicals and plant-based pesticides. Phytochemistry; 2021; 187, 112714. [DOI: https://dx.doi.org/10.1016/j.phytochem.2021.112714]
168. Wang, Y.H.; Zhao, J.C.; Weng, Q.Q.; Jin, Y.; Zhang, W.; Peng, H.S. Textual research on classical prescriptions of Saposhnikoviae Radix. Mod. Chin. Med.; 2020; 22, pp. 1331-1339.
169. Ji, L.; Pan, J.G.; Yang, J.; Xiao, Y.Q. GC-MS analysis of essential oils from the roots of Saposhnikovia divaricata (Turcz.) Schischk, Libanotis laticalycina Shan et Sheh, Seseli yunnanense Franch. and Peucedanum dielsianum Fedde ex Wolff. China J. Chin. Mater. Med.; 1999; 24, pp. 678–680+702.
170. Yan, Y.N.; Ding, S.F.; Guo, Y.W.; Tian, H.K.; Zuo, M.J. Study on customary medication in windbreak area I-Pharmacokinetics and chemical constituents of Saposhnikovia divaricata. Northwest Pharm. J.; 1988; 3, pp. 31-34.
171. Kong, L.Y.; Pei, Y.H.; Yu, R.M.; Li, X.; Zhu, Y.R. Overview of the chemical and pharmacological research of the Chinese medicine Peucedanum pareruptorum and P. Decursivum. World Notes Plant Med.; 1991; 6, pp. 243-254.
172. Li, W.; Feng, S.H.; Hu, F.D.; Chen, E.L. Goumarins from Peucedanum harry-smithiivar subglabrum. China J. Chin. Mater. Med.; 2009; 34, pp. 1231-1234.
173. Shi, Y.R.; Kong, L.Y. Exploration of thinking and method in study of active components of Chinese medicine by taking radix Peucedani for example. Mod. Tradit. Chin. Med. Mater. Mater.-World Sci. Technol.; 2005; 7, pp. 38–46+137.
174. Song, P.S.; Ding, Y.H.; Zhang, B.C.; Yang, J.; Jing, F.L.; Cheng, J.S.; Wang, A.P.; Song, L.; Lin, F. Investigation and identification of Peucedanum praeruptorum in Gansu. J. Chin. Med. Mater.; 1994; 17, pp. 13–14+55.
175. Li, L.H.; Zhang, H.B.; Yang, C.Z.; Cai, D.L. Analysis of volatile oils from different parts of Peucedanum japonicum by GC-MS. Subtrop. Plant Sci.; 2015; 44, pp. 279-283.
176. Xu, X.; Li, H.F. Analysis of medicinal value of Peucedanum japonicum. Asia-Pac. Tradit. Med.; 2016; 12, pp. 45-47.
177. Barot, K.P.; Jain, S.V.; Kremer, L.; Singh, S.; Ghate, M.D. Recent advances and therapeutic journey of coumarins: Current status and perspectives. Med. Chem. Res.; 2015; 24, pp. 2771-2798. [DOI: https://dx.doi.org/10.1007/s00044-015-1350-8]
178. Lei, H.P.; Zou, S.Y.; Zhang, H.; Ge, F.H. Composition analysis of volatile oil from three kinds of Peucedanum. J. Chin. Med. Mater.; 2016; 39, pp. 795-798.
179. Huang, P.; Zheng, X.Z.; Lai, M.X.; Rao, W.Y.; Nishi, M.; Nakanishi, T. Studies on chemical constituents of Peucedanum medium Dunn var. garcile Dunn ex Shan at Sheh. China J. Chin. Mater. Med.; 2000; 25, pp. 222-224.
180. Song, Z.Q.; Li, B.; Tian, K.Y.; Hong, L.; Wu, W.; Zhang, H.Y. Research progress on chemical constituents and pharmacological activities of Peucedanum praeruptorum Dunn. Chin. Tradit. Herb. Drugs; 2021; 3, pp. 1-16.
181. Dai, W.S.; Rao, G.X.; Liu, Q.X.; Yang, Q.; Dai, Y.H.; Sun, H.D. Chemical constituents of Peucedanum rubricaule. J. Yunnan Coll. Tradit. Chin. Med.; 1995; 18, pp. 1-4.
182. Rao, G.X.; Huang, H.; Sun, H.D. Terpenoids from Peucedanum rubricaule. Nat. Prod. Res. Dev.; 2006; 18, pp. 69-70.
183. Rao, G.X.; Sun, H.D.; Lin, Z.W.; Hu, R.Y. Studies on the chemical constituents of the traditional Chinese medicine “yun qian-hu” (Peucedanum Rubricaule Shan et Shch. Acta Pharm. Sin.; 1990; 26, pp. 30-36.
184. Yu, Z.P.; Li, J.J.; Rao, G.X.; Yu, Z.R. Brief pharmacological studied on Peucedanum Praerptorum Dunn habitually used in Southwest Arep. J. Yunnan Coll. Tradit. Chin. Med.; 1995; 18, pp. 7-11.
185. Rao, G.X.; Liu, Q.X.; Dai, W.S.; Sun, H.D. Chemical constituents of Peucedanum turgeniifolium. Nat. Prod. Res. Dev.; 1997; 9, pp. 9-11.
186. Wu, X.L.; Kong, L.Y.; Min, Z.D. The chemical constituents of Peucedanum wawrii (Wolff) Su root. J. Plant Resour. Environ.; 2000; 9, pp. 6-8.
187. Abuaini, T.; Wang, Y.; Aili, S. Study on quality standards of Pimpinella anisum L. fruits. J. Med. Pharm. Chin. Minor.; 2013; 8, pp. 51-52.
188. Benelli, G.; Pavela, R.; Iannarelli, R.; Petrelli, R.; Cappellacci, L.; Cianfaglione, K.; Afshar, F.H.; Nicoletti, M.; Canale, A.; Maggi, F. Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: Larvicidal effectiveness on the filariasis vector Culex quinquefasciatus Say. Ind. Crops Prod.; 2017; 96, pp. 186-195. [DOI: https://dx.doi.org/10.1016/j.indcrop.2016.11.059]
189. Chinese Materia Madica-Uyghur Traditional Medicine. Chinese Materia Madica, Uyghur Traditional Medicine; Scientific & Technical Publishers: Shanghai, China, 2005; pp. 301-302.
190. Editorial Board of Chinese Medical Encyclopedia. Chinese Medical Encyclopedia, Uyghur Traditional Medicine; Scientific & Technical Publishers: Shanghai, China, 2005.
191. Gu, Y.S.; Gu, Y.F. The Science of Common Medicinal Materials in Uygur Medicine (Rudin); Xinjiang Science and Technology Health Publishing House: Urumchi, China, 1993; pp. 60-61.
192. Sun, W.J.; Sheng, J.F. Concise Handbook of Natural Active Ingredients; China Medical Science Press: Beijing China, 1996.
193. Wei, Y.; Zhang, X.; Wei, L.; Yang, X.S. Analysis of volatile oil in herb of Pimpinella candolleana. J. Guiyang Univ. Chin. Med.; 2005; 27, pp. 56-57.
194. Zhao, C.; Chen, H.G.; Cheng, L.; Zhou, X.; Yang, Z.B.; Zhang, Y.S. Analysis of volatile oil in herb of Pimpinella candolleana by SPME-GC-MS. China J. Chin. Mater. Med.; 2007; 32, pp. 1759-1762.
195. Hu, L.F.; Lv, W.Y.; Zhou, L.; Li, X. Antifungal activities of five umbelliferae plant extracts against plant pathogens. Hubei Agric. Sci.; 2012; 51, pp. 3490-3491.
196. Dong, L.S.; Zhao, Z.H. Identification of raw drugs of Chinese herb Pimpinella diversifolia. J. Guiyang Univ. Chin. Med.; 1991; 13, pp. 62-64.
197. Dong, Q.; Li, J.; Liu, Y.F.; Yang, G.X.; Hu, Y.Y.; Jiang, Y.L.; Liu, Q. Study on the medicinal effect of extracts from Pimpinella diversifolia. China Pract. Med.; 2021; 16, pp. 197-200.
198. Xu, X.W.; Lin, G.Y.; Lin, C.L. Study on the chemical components of essentiale oil from Zhejiang Pimpinella diversifolia. China Pharm.; 2012; 21, pp. 3-4.
199. Cui, X.M.; Shi, H.L.; Ren, H.; Hu, J.; Meng, M.X.; Chen, J.; Meng, X.; Chen, Z.Y. Content determination of nine constituents in different medicinal parts of Pimpinella thellungiana. Chin. J. Exp. Tradit. Med. For.; 2019; 25, pp. 97-103.
200. Huanglong County Leading Group of Prevention and Control of Endemic Diseases in Yan’an Region. A comprehensive analysis of 92 cases of Keshan disease treated with Pimpinella magna. Shaanxi Med. J.; 1972; 1, pp. 34-35.
201. Jin, Z.G.; Wang, M.S. Advances in studies of herbal Pimpinella thellugiana Wolff. J. Shangluo Univ.; 2008; 22, pp. 43-46.
202. Liu, R.; Tai, G.; Pei, X.L.; Wang, R.; Zhang, S.R.; Pei, M.R. Determination of nine components in Yanghongshan by UPLC. Chin. J. Pharm. Anal.; 2020; 40, pp. 1097-1103.
203. Wang, J.Q.; Zhao, X.M.; Duan, X.Z. The effect of Pimpinella thellungiana on immune function of patients with coronary heart disease. Shaanxi Med. J.; 1986; 15, pp. 58-60.
204. Liu, Q.G.; Zhang, Z.T.; Chen, Z.G. Study on the active components of volatile oil from the seeds of Pleurospermum giraldii Diels. Chin. Tradit. Herb. Drugs; 1998; 29, pp. 516-517.
205. Zhang, Z.T. L-carvone the principal constituent of volatile oil from Pleurospermum giraldii Diels seeds effects on the smooth musice of intestine and womb for rats. J. Shaanxi Norm. Univ. (Nat. Sci. Ed.).; 2000; 28, pp. 77-79.
206. Zhang, Z.T.; Liu, Q.G.; He, Y.; Chen, Z.G.; Gao, Z.W. Study on the chemical components from the seeds of Pleurospermum giraldii Diels. Chin. Tradit. Herb. Drugs; 1998; 29, pp. 800-801.
207. Revolutionary Committee of Health Bureau of Yunnan Province. Chinese Herbal Medicine in Yunnan; Yunnan People’s Publishing House: Kunming, China, 1971; pp. 98-99.
208. Liu, M.Y.; Yu, L.F.; Yang, F.; Liu, P.H. Study on the adsorption of bile salts and cholesterol by water soluble constituents from Sanicula Astrantiifolia. J. Qujing Norm. Univ.; 2016; 35, pp. 37-41.
209. Liu, P.H.; Yang, G.H.; Tian, X.L.; Zhang, Y.G.; Li, F.S.; Wang, F. Antioxidating effects of Inula nervosa Wall. ex DC. on the edible oils and its antimicrobial activity. Sci. Technol. Food Ind.; 2011; 32, pp. 187-189.
210. Xu, G.M.; Wang, Z.M.; Liu, N.Z.; He, W.J.; Peng, S.; Zhou, X.J. Study on chemical constituents from ethyl acetate extraction of Sanicula lamelligera. J. Chin. Med. Mater.; 2015; 38, pp. 1661-1664.
211. Zhou, X.J.; Zeng, N.; Jia, M.R. Screening of effective ingredients for relieving cough and resolving phlegm in the herba Saniculae. Chin. J. Ethnomed. Ethnoph.; 2005; 72, pp. 46–49+62.
212. Liu, B. China Checklist of Higher Plants; Biodiversity Committee of Chinese Academy of Sciences. 2022 Annual Checklist Catalogue of Life China: Beijing, China, 2022.
213. Karagoz, A.; Turan, K.; Arda, N.; Okatan, Y.; Kuru, A. ln vitro virucidal effect of Sanicula europaea L. extract. Turk. J. Biol.; 1997; 21, pp. 181-188. [DOI: https://dx.doi.org/10.55730/1300-0152.2520]
214. Turan, K.; Kuru, A. Antiviral activity of water extract of Sanicula europaea L. leaves on the bacteria-bacteriophage system. Turk. J. Biol.; 1996; 20, pp. 225-234. [DOI: https://dx.doi.org/10.55730/1300-0152.2547]
215. Hiller, K.; Linzer, B.; Pfeifer, S.; Tökes, L.; Murphy, J. On the saponins from Sanicula europaea L. On the knowledge of the contents of some Saniculoideae. Pharmazie; 1968; 23, pp. 376-387. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/5700484]
216. Legin, N.I.; Koliadzhyn, T.I.; Grytsyk, L.M.; Grytsyk, A.R. Investigation of the elemental composition of Sanicula Europaea L. and Astrantia Major L. Med. Clin. Chem.; 2018; 20, pp. 112-116.
217. Matsushita, A.; Miyase, T.; Noguchi, H.; Velde, D.V. Oleanane saponins from Sanicula elata var. chinensis. J. Nat. Prod.; 2004; 67, pp. 377-383. [DOI: https://dx.doi.org/10.1021/np030316v]
218. Chang, L.; Jing, W.G.; Cheng, X.L.; Wei, F.; Ma, S.C. Research progress on chemical constituents and pharmacological effects of Saposhnikoviae Radix and predictive analysis on quality marker (Q-Marker). Mod. Chin. Med.; 2022; 24, pp. 2026-2039.
219. Liu, S.L.; Jiang, C.X.; Zhao, Y.; Xu, Y.H.; Wang, Z.; Zhang, L.X. Advance in study on chemical constituents of Saposhnikovia divaricate and their pharmacological effects. Chin. Tradit. Herb. Drugs; 2017; 48, pp. 2146-2152.
220. Gui, J.S.; Wei, Q.H. Pharmacodynamic comparison between Seseli mairei and Saposhnikvia divaricata. J. Yunnan Coll. Tradit. Chin. Med.; 1991; 14, pp. 3-6.
221. Gui, J.S.; Wei, Q.H.; Yang, S.D. Discussion on varieties of Yunnan Fangfeng. J. Yunnan Coll. Tradit. Chin. Med.; 1991; 14, pp. 23-25.
222. Zong, Y.L.; Lin, Y.P.; Ding, Q.E.; He, H.; Rao, G.X. Studies on the chemical constituents of the aerial parts of Seselimairei. J. Chin. Med. Mater.; 2007; 30, pp. 42-44.
223. Lin, Y.P.; Wang, J.; Hu, C.Y.; Rao, G.X. Chemical constituents from the roots of Seseli yunnanense. J. Chin. Med. Mater.; 2017; 40, pp. 2586-2589.
224. Xu, Y.; Chen, N.X. Comparative identification of Ligusticum sinense and Sium suave. Heilongjiang J. Tradit. Chin. Med.; 1998; 5, pp. 47-48.
225. Qin, N.; Su, Y.F.; Wang, Y.D.; Shi, J.G.; Yue, F.X.; Wu, Z.H.; Gao, X.M. Chemical constituents from Tongoloa silaifolia. Biochem. Syst. Ecol.; 2012; 44, pp. 380-382. [DOI: https://dx.doi.org/10.1016/j.bse.2012.06.022]
226. Qin, N.; Su, Y.F.; Wang, Y.D.; Zhang, H.; Wu, Z.H.; Gao, X.M. Chemical Constituents of Tongoloa silaifolia. Nat. Prod. Res. Dev.; 2013; 25, pp. 201-203. [DOI: https://dx.doi.org/10.1016/j.bse.2012.06.022]
227. Xu, H.N.; Mu, Y.; Zhang, Z.H.; Zhang, Z.; Zhang, D.Y.; Tan, X.Q.; Shi, X.B.; Liu, Y. Extraction and identification of volatiles from Artemisia argyi and Torilis scabra and their effects on preference of Bemisia tabaci MED (Hemiptera: Aleyrodidae) adults. Acta Entomol. Sin.; 2022; 65, pp. 343-350.
228. Bairwa, R.; Sodha, R.S.; Rajawat, B.S. Trachyspermum ammi. Pharmacogn. Rev.; 2012; 6, 56. [DOI: https://dx.doi.org/10.4103/0973-7847.95871] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22654405]
229. Kaur, G.J.; Arora, D.S. Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC Complement. Altern. Med.; 2009; 9, 30. [DOI: https://dx.doi.org/10.1186/1472-6882-9-30] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19656417]
230. Kaur, G.J.; Arora, D.S. Bioactive potential of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi belonging to the family Umbelliferae-Current status. J. Med. Plants Res.; 2010; 4, pp. 87-94.
231. Shankaracharya, N.B.; Nagalakshmi, S.; Naik, J.P.; Rao, L.J.M. Studies on chemical and technological aspects of ajowan (Trachyspermum ammi (L.) Syn. Carum copticum Hiern) seeds. J. Food Sci. Technol.; 2000; 37, pp. 277-281.
232. Dong, S.T.; Zhang, X.Q.; Hu, Y.; Gong, X.M.; Yang, H.Q. Chemical constituents, quality control and pharmacology research progress of Xigui Chin. J. Ethnomed. Ethnoph.; 2018; 27, pp. 40-42.
233. Zhang, W.M.; Duan, Z.H.; Sun, F.; Rao, G.X. The chemical constituents from the roots of Vicatia thibetica. Nat. Prod. Res. Dev.; 2004; 16, pp. 218-219.
234. Zhou, N.; Duan, Y.M.; Chen, Q.; Ma, X.K. Study on pharmacognosy of Xigui. J. Anhui Agric. Sci.; 2007; 35, pp. 2307-2425.
235. Hong, Q.Y.; Zhang, J.J.; Wang, C.; Wang, L.Y.; Zhang, R.; Le, N. Discussion on the Chinese medicine properties of foreign botanical medicine Ammi visnaga L. China J. Tradit. Chin. Med. Pharm.; 2022; 37, pp. 2284-2288.
236. Ma, Q.D.; Li, G.Y.; Wang, J.H. Research progress on pharmacological activity of Uygur medicine Trachyspermum ammi fruits. J. Nongken Med.; 2011; 33, pp. 180-184.
237. Yao, H.J.; Zhao, C.Y.; Jiang, L.Q.; Lv, H.Z. Study of Pharmacognostical and HPLC Fingerprint on Angelica acutiloba of Korean Drugs. J. Chin. Med. Mater.; 2018; 41, pp. 1384-1390.
238. Fang, Z.X. Annals of Tujia Medicine; The Medicine Science and Technology Press of China: Beijing, China, 2007.
239. Wei, W.L.; Zeng, R.; Gu, C.M.; Qu, Y.; Huang, L.F. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J. Ethnopharmacol.; 2016; 190, pp. 116-141. [DOI: https://dx.doi.org/10.1016/j.jep.2016.05.023]
240. Shan, H.Y.; Jiao, T.Y. Determination of ferulic acid in shiquan dabu capsules by HPLC. Chin. Med. Mod. Distance Educ. China; 2011; 9, pp. 138-139.
241. Huang, T.; Liu, D.; Cui, X.; Li, M.; Jin, L.; Paré, P.W.; Li, M.; Wei, J. In vitro bioactive metabolite production and plant regeneration of medicinal plant Angelica sinensis. Ind. Crops Prod.; 2023; 194, 116276. [DOI: https://dx.doi.org/10.1016/j.indcrop.2023.116276]
242. Liu, H.B.; Lu, A.J.; Liu, B.; Zhou, J.J. Exploring relationship between traditional effects of traditional Chinese medicine and modern pharmacological activities by “co-effect compounds”. China J. Chin. Mater. Med.; 2005; 30, pp. 76-79.
243. Xing, Y.C.; Li, N.; Zhou, D.; Chen, G.; Jiao, K.; Wang, W.L.; Si, Y.Y.; Hou, Y. Sesquiterpene coumarins from Ferula sinkiangensis act as neuroinflammation inhibitors. Planta Med.; 2016; 83, pp. 135-142. [DOI: https://dx.doi.org/10.1055/s-0042-109271]
244. Kokotkiewicz, A.; Luczkiewicz, M. Chapter 37—Celery (Apium graveolens var. dulce (Mill.) Pers.) Oils Celery (Apium graveolens var. dulce (Mill.) Pers.) Oils. Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R. Academic Press: San Diego, CA, USA, 2016; pp. 325-338.
245. Mišić, D.; Zizovic, I.; Stamenić, M.; Ašanin, R.; Ristić, M.; Petrović, S.D.; Skala, D. Antimicrobial activity of celery fruit isolates and SFE process modeling. Biochem. Eng. J.; 2008; 42, pp. 148-152. [DOI: https://dx.doi.org/10.1016/j.bej.2008.06.008]
246. Meng, H.; Li, G.Y.; Huang, J.; Zhang, K.; Wang, H.Y.; Wang, J.H. Sesquiterpene coumarin and sesquiterpene chromone derivatives from Ferula ferulaeoides (Steud.) Korov. Fitoterapia; 2013; 86, pp. 70-77. [DOI: https://dx.doi.org/10.1016/j.fitote.2013.02.002]
247. Lin, L.; Qian, X.P.; Hu, J.; Hu, W.J.; Zhang, G.D.; XIe, L.; Yu, L.X. Experimental study of Angelica pubescens and Osthole isolated from Angelica pubescens anti-tumor activity in vitro. Mod. Oncol.; 2013; 21, pp. 1930-1931.
248. Martins, N.; Barros, L.; Santos-Buelga, C.; Ferreira, I.C.F.R. Antioxidant potential of two Apiaceae plant extracts: A comparative study focused on the phenolic composition. Ind. Crops Prod.; 2016; 79, pp. 188-194. [DOI: https://dx.doi.org/10.1016/j.indcrop.2015.11.018]
249. Yuan, C.Q. Synopsis of Chinese medicinal plants of Umbelliferae. Bull. Chin. Mater. Med.; 1986; 11, pp. 5-9.
250. BeMiller, J.N. Polysaccharides: Occurrence, Structures, and Chemistry. Carbohydrate Chemistry for Food Scientists; 3rd ed. BeMiller, J.N. AACC International Press: Cambridge, UK, 2019; pp. 75-101.
251. Li, L.; Zhou, Y.; Zhang, L. Effect of Polysaccharide of radix sileris on enhancing macrophagocyte’s antineoplastic function. J. Beijing Univ. TCM; 1999; 22, pp. 38-40.
252. Zheng, Y.; Bai, L.; Zhou, Y.; Tong, R.; Zeng, M.; Li, X.; Shi, J. Polysaccharides from Chinese herbal medicine for anti-diabetes recent advances. Int. J. Biol. Macromol.; 2019; 121, pp. 1240-1253. [DOI: https://dx.doi.org/10.1016/j.ijbiomac.2018.10.072]
253. Bi, S.J.; Fu, R.J.; Li, J.J.; Chen, Y.Y.; Tang, Y.P. The bioactivities and potential clinical values of Angelica sinensis polysaccharides. Nat. Prod. Commun.; 2021; 16, pp. 1-18. [DOI: https://dx.doi.org/10.1177/1934578X21997321]
254. Dong, X.D.; Liu, Y.N.; Zhao, Y.; Liu, A.J.; Ji, H.Y.; Yu, J. Structural characterization of a water-soluble polysaccharide from Angelica dahurica and its antitumor activity in H22 tumor-bearing mice. Int. J. Biol. Macromol.; 2021; 193, pp. 219-227. [DOI: https://dx.doi.org/10.1016/j.ijbiomac.2021.10.110] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34688677]
255. Wang, J.M.; Lian, P.L.; Yu, Q.; Wei, J.F.; Kang, W.Y. Purification, characterization and procoagulant activity of polysaccharides from Angelica dahurice roots. Chem. Cent. J.; 2017; 11, pp. 1-8. [DOI: https://dx.doi.org/10.1186/s13065-017-0243-y] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28246546]
256. Liu, Z.Z.; Weng, H.B.; Zhang, L.J.; Pan, L.Y.; Sun, W.; Chen, H.X.; Chen, M.Y.; Zeng, T.; Zhang, Y.Y.; Chen, D.F. et al. Bupleurum polysaccharides ameliorated renal injury in diabetic mice associated with suppression of HMGB1-TLR4 signaling. Chin. J. Nat. Med.; 2019; 17, pp. 641-649. [DOI: https://dx.doi.org/10.1016/S1875-5364(19)30078-0] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31526499]
257. Wu, J.; Zhang, Y.Y.; Guo, L.; Li, H.; Chen, D.F. Bupleurum polysaccharides attenuates lipopolysaccharide-induced inflammation via modulating toll-like receptor 4 signaling. PLoS ONE; 2013; 8, e78051. [DOI: https://dx.doi.org/10.1371/journal.pone.0078051] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24167596]
258. Zhang, Z.D.; Li, H.; Wan, F.; Su, X.Y.; Lu, Y.; Chen, D.F.; Zhang, Y.Y. Polysaccharides extracted from the roots of Bupleurum chinense DC. modulates macrophage functions. Chin. J. Nat. Med.; 2017; 15, pp. 889-898. [DOI: https://dx.doi.org/10.1016/S1875-5364(18)30004-9]
259. Kukula-Koch, W.A.; Widelski, J. Chapter 9—Alkaloids. Pharmacognosy; Badal, S.; Delgoda, R. Academic Press: Boston, MA, USA, 2017; pp. 163-198.
260. Ain, Q.U.; Khan, H.; Mubarak, M.S.; Pervaiz, A. Plant alkaloids as antiplatelet agent: Drugs of the future in the light of recent developments. Front. Pharmacol.; 2016; 7, 292. [DOI: https://dx.doi.org/10.3389/fphar.2016.00292]
261. Khan, H. Anti-inflammatory potential of alkaloids as a promising therapeutic modality. Lett. Drug Des. Discov.; 2016; 14, pp. 240-249. [DOI: https://dx.doi.org/10.2174/1570180813666160712224752]
262. Perviz, S.; Khan, H.; Pervaiz, A. Plant alkaloids as an emerging therapeutic alternative for the treatment of depression. Front. Pharmacol.; 2016; 7, 28. [DOI: https://dx.doi.org/10.3389/fphar.2016.00028]
263. Pu, Z.H.; Dai, M.; Peng, C.; Xiong, L. Research progress on material basis and pharmacological action of Ligusticum chuanxiong alkaloids. J. Funct. Foods; 2020; 31, pp. 1020-1024.
264. Zhou, Y.; Liu, X.; Wang, L.Y. Effects of Chuanxiong alkaloid on myocardial fibrosis in rats. J. Beihua Univ. (Nat. Sci.).; 2022; 23, pp. 200-203.
265. Radulović, N.; Đorđević, N.; Denić, M.; Pinheiro, M.M.G.; Fernandes, P.D.; Boylan, F. A novel toxic alkaloid from poison hemlock (Conium maculatum L., Apiaceae): Identification, synthesis and antinociceptive activity. Food Chem. Toxicol.; 2012; 50, pp. 274-279. [DOI: https://dx.doi.org/10.1016/j.fct.2011.10.060] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22063758]
266. Deng, Y.X.; Lu, S.F. Biosynthesis and regulation of phenylpropanoids in plants. Crit. Rev. Plant Sci.; 2017; 36, pp. 257-290. [DOI: https://dx.doi.org/10.1080/07352689.2017.1402852]
267. Böttger, A.; Vothknecht, U.; Bolle, C.; Wolf, A. Phenylpropanoids. Lessons on Caffeine, Cannabis & Co: Plant-Derived Drugs and their Interaction with Human Receptors; Springer International Publishing: Cham, Switzerland, 2018; pp. 171-178.
268. Spitaler, R.; Ellmerer-Müller, E.P.; Zidorn, C.; Stuppner, H. Phenylpropanoids and Polyacetylenes from Ligusticum mutellina (Apiaceae) of Tyrolean Origin. Sci. Pharm.; 2002; 70, pp. 101-109.
269. Wang, D.D.; Liu, H.B.; Song, H.L.; Yang, W.X.; Jia, X.G.; Tian, S.G. Determination of ferulic acid content in roots and leaves of Ferula fukanensis K. M. Shen. by HPLC. J. Xinjiang Med. Univ.; 2012; 35, pp. 1139-1142.
270. Wen, Q.; Wang, X.Y. Determination the content of ferulic acid in Pleurospermum Hoffm. by HPLC. Chin. J. Ethnomed. Ethnopumnacy; 2018; 27, pp. 49-51.
271. Lu, G.H.; Chan, K.; Leung, K.; Chan, C.L.; Zhao, Z.Z.; Jiang, Z.H. Assay of free ferulic acid and total ferulic acid for quality assessment of Angelica sinensis. J. Chromatogr. A; 2005; 1068, pp. 209-219. [DOI: https://dx.doi.org/10.1016/j.chroma.2005.01.082]
272. Zhang, K.X.; Shen, X.; Yang, L.; Chen, Q.; Wang, N.N.; Li, Y.M.; Song, P.S.; Jiang, M.; Bai, G.; Yang, P.R. et al. Exploring the Q-markers of Angelica sinensis (Oliv.) Diels of anti-platelet aggregation activity based on spectrum–effect relationships. Biomed. Chromatogr.; 2022; 36, e5422. [DOI: https://dx.doi.org/10.1002/bmc.5422]
273. Hwang, H.D.; Han, J.E.; Murthy, H.N.; Kwon, H.J.; Lee, G.M.; Shin, J.H.; Park, S.Y. Establishment of bioreactor cultures for the production of chlorogenic acid and ferulic acid from adventitious roots by optimization of culture conditions in Angelica acutiloba (Siebold & Zucc.) Kitag. Plant Biotechnol. Rep.; 2022; 16, pp. 173-182.
274. Lim, E.Y.; Kim, J.G.; Lee, J.; Lee, C.; Shim, J.; Kim, Y.T. Analgesic effects of Cnidium officinale extracts on postoperative, neuropathic, and menopausal pain in rat models. Evid. Based Complement. Alternat. Med.; 2019; 2019, pp. 1-8. [DOI: https://dx.doi.org/10.1155/2019/9698727] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31316578]
275. Qiu, G.Y.; Li, Y.; Li, X.C.; Cheng, X.L.; Wei, F.; Kang, S.; Ma, S.C. Research on chemical constituents and quality control methods of Peucedani medicinal materials. Chin. Pharm. Aff.; 2019; 33, pp. 446-459.
276. Yuan, C.Q. Chemical classification of Umbelliferae: Coumarins. Foreign Med. Sci. Pharm.; 1980; 5, pp. 289-294.
277. Xing, Y.C.; Li, N.; Xue, J. Progress on chemical constituents of Ferula genus. J. Shenyang Pharm. Univ.; 2012; 29, pp. 730-741.
278. Xie, N.; Liu, Z.R.; Zhang, M.T.; Zhang, P.; Li, D.H.; Ma, X.; Guo, Z.H.; Zheng, Q.L. Determination of 9 chemical components of coumarins in Angelica dahurica by high performance liquid chromatography and its multivariate statistical analysis. PTCA (Part B Chem. Anal.); 2022; 58, pp. 659-663.
279. Fylaktakidou, K.C.; Hadjipavlou-Litina, D.J.; Litinas, K.E.; Nicolaides, D.N. Natural and synthetic coumarin derivatives with anti-Inflammatory/antioxidant activities. Curr. Pharm. Des.; 2004; 10, pp. 3813-3833. [DOI: https://dx.doi.org/10.2174/1381612043382710]
280. Ngo, N.T.N.; Nguyen, V.T.; Vo, H.V.; Vang, O.; Duus, F.; Ho, T.D.H.; Pham, H.D.; Nguyen, L.H.D. Cytotoxic Coumarins from the Bark of Mammea siamensis. Chem. Pharm. Bull.; 2010; 58, pp. 1487-1491. [DOI: https://dx.doi.org/10.1248/cpb.58.1487]
281. Reddy, N.S.; Mallireddigari, M.R.; Cosenza, S.; Gumireddy, K.; Bell, S.C.; Reddy, E.P.; Reddy, M.V.R. Synthesis of new coumarin 3-(N-aryl) sulfonamides and their anticancer activity. Bioorg. Med. Chem. Lett.; 2004; 14, pp. 4093-4097. [DOI: https://dx.doi.org/10.1016/j.bmcl.2004.05.016]
282. Sahni, T.; Sharma, S.; Verma, D.; Kaur, P. Overview of coumarins and its derivatives: Synthesis and biological activity. Lett. Org. Chem.; 2021; 18, pp. 880-902. [DOI: https://dx.doi.org/10.2174/1570178617999201006195742]
283. Wang, S.; Shi, Y.H.; Wang, R.; Hu, S.W.; Luo, J.; Kuang, G.; Chen, S.C. Advances in chemical compositions, analytical methods and pharmacological effects of coumarins in Peucedani Radix. Shanghai J. Tradit. Chin. Med.; 2022; 56, pp. 89-99.
284. Ballard, C.R.; Maróstica, M.R. Chapter 10—Health Benefits of Flavonoids Health Benefits of Flavonoids. Bioactive Compounds; Campos, M.R.S. Woodhead Publishing: Cambridge, UK, 2019; pp. 185-201.
285. Gebhardt, Y.; Witte, S.; Forkmann, G.; Lukačin, R.; Matern, U.; Martens, S. Molecular evolution of flavonoid dioxygenases in the family Apiaceae. Phytochemistry; 2005; 66, pp. 1273-1284. [DOI: https://dx.doi.org/10.1016/j.phytochem.2005.03.030] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15913674]
286. Kim, M.R.; Lee, J.Y.; Lee, H.H.; Aryal, D.K.; Kim, Y.G.; Kim, S.K.; Woo, E.-R.; Kang, K.W. Antioxidative effects of quercetin-glycosides isolated from the flower buds of Tussilago farfara L. Food Chem. Toxicol.; 2006; 44, pp. 1299-1307. [DOI: https://dx.doi.org/10.1016/j.fct.2006.02.007] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16574296]
287. Zhang, T.T.; Zhou, J.S.; Wang, Q. HPLC analysis of flavonoids from the aerial parts of Bupleurum species. Chin. J. Nat. Med.; 2010; 8, pp. 107-113. [DOI: https://dx.doi.org/10.3724/SP.J.1009.2010.00107]
288. Singh, M.; Kaur, M.; Silakari, O. Flavones: An important scaffold for medicinal chemistry. Eur. J. Med. Chem.; 2014; 84, pp. 206-239. [DOI: https://dx.doi.org/10.1016/j.ejmech.2014.07.013] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25019478]
289. Wang, Y.F.; Ma, C.Y.; Xiong, X.; Ding, Z.L. Study on antioxidative activity of total flavonoids from Anthriscus sylvestris in vitro and vivo. West. J. Tradit. Chin. Med.; 2014; 27, pp. 11-13.
290. Pérez-Vizcaíno, F.; Ibarra, M.; Cogolludo, A.L.; Duarte, J.; Zaragozá-Arnáez, F.; Moreno, L.; López-López, G.; Tamargo, J. Endothelium-independent vasodilator effects of the flavonoid quercetin and its methylated metabolites in Rat conductance and resistance arteries. J. Pharmacol. Exp. Ther.; 2002; 302, pp. 66-72. [DOI: https://dx.doi.org/10.1124/jpet.302.1.66]
291. Yonekura-Sakakibara, K.; Saito, K. Functional genomics for plant natural product biosynthesis. Nat. Prod. Rep.; 2009; 26, 1466. [DOI: https://dx.doi.org/10.1039/b817077k]
292. Pan, S.L. Bupleurum Species: Scientific Evaluation and Clinical Applications; Taylor & Francis Group: London, UK, 2006.
293. Qin, H.Z.; Lin, S.; Deng, L.Y.; Zhu, H. Advances in pharmacological effects and mechanisms of asiaticoside. China Pharm.; 2021; 32, pp. 2683-2688.
294. Yuan, R.L.; Zhang, Y.W.; Shen, J.Y.; Wang, D.; Chen, Q.; Wang, T.; Liu, M.Y. Research progress in the effect and mechanism of medicinal plants derived terpenoids on cholestatic liver injury. Cent. South Pharm.; 2022; 20, pp. 877-887.
295. Zhou, X.; Ke, C.L.; Lv, Y.; Ren, C.H.; Lin, T.S.; Dong, F.; Mi, Y.J. Asiaticoside suppresses cell proliferation by inhibiting the NF-KB signaling pathway in colorectal cancer. Int. J. Mol. Med.; 2020; 46, pp. 1525-1537.
296. Song, P.; Na, N.; Wang, Y. Effects of saikosaponin D on insulin resistance and FoxO1/PGC-1α pathway in type 2 diabetic rats. Chin. J. Immunol.; 2022; 11, pp. 1-15.
297. Li, Y.N.; Yang, S.J.; Bai, S.Y. Studies on chemical constituents from roots of Angelica polymorpha. China J. Chin. Mater. Med.; 2009; 34, pp. 854-857.
298. Sun, S.; Ling, X.; Kong, L.Y.; Zhang, H.Q.; He, S.A. Chromones from Angelica morri Hayata. J. China Pharm. Univ.; 2003; 34, pp. 125-127.
299. Xue, B.Y.; Li, W.; Li, L.; XIiao, Y.Q. A pharmacodynamic research on chromone glucosides of Saposhnikovia divaricata. China J. Chin. Mater. Med.; 2000; 25, pp. 297-299.
300. Shan, Y.; Feng, X.; Dong, Y.F.; Chang, Q.Y. The advance on the research of chemical constituents and pharmacological activities of Bupleurum. Chin. Wild Plant Res.; 2004; 23, pp. 5–7+14.
301. Li, M.F.; Li, X.Z.; Wei, J.H.; Zhang, Z.; Chen, S.J.; Liu, Z.H.; Xing, H. Selection of high altitude planting area of Angelica sinensis based on biomass, bioactive compounds accumulation and antioxidant capacity. Chin. Tradit. Herb. Drugs; 2020; 51, pp. 474-480.
302. Zhang, Z.M.; Zhai, Z.X.; Guo, Y.H.; Fu, X.M.; Deng, S.J.; Bu, Y.Y.; Zhao, Z.M.; Zhao, Y.H.; Yang, C.Q.; Tu, P.F. et al. Dynamic characteristic of dry matter accumulation and isoimperatorin in Angelica dahurica. Chin. Tradit. Herb. Drugs; 2005; 36, pp. 902-904.
303. Yu, Y.; Wang, X.Q.; Bao, Y.X.; Zhang, Y.G.; Hou, B.S. Studies on laws of growth and development of Bupleurum chinense. J. Jilin Agric. Univ.; 2003; 25, pp. 523-527.
304. Zhao, J.Y.; Zhang, W.Y.; Li, Y.; Gong, J.R. Elevation effect on saikosaponin content in Bupleurum chinense DC taproots and lateral roots. J. Beijing Norm. Univ. (Nat. Sci.).; 2017; 53, pp. 603-608.
305. Guo, Q.S.; Wang, C.L.; Li, Y.S.; Du, Q.; Qin, M.J. Dynamic study on dry material accumulation and amylose content of cultivated Changium smyrnioides. China J. Chin. Mater. Med.; 2007; 32, pp. 24-26.
306. Wang, R.H. Key points of cultivation techniques of Angelica sinensis. N. Agric.; 2021; 3, pp. 45-46.
307. Yan, Y.C.; Liao, W.; Li, X.L.; Guo, Q.; Chen, P. Experimental study on the main factors and planting scheme optimization in Angelica pubescens Maxim. cultivation. Hubei J. Tradit. Chin. Med.; 2012; 34, pp. 65-66.
308. Wei, Z.Q.; Xiao, J.Y.; Han, F. Breeding of retained species of Angelica dahurica. Spec. Econ. Anim. Plant.; 2007; 10, pp. 36-37.
309. Zhou, S.R.; Li, B.L. Cultivation of Glehnia littoralis. Spec. Econ. Anim. Plant.; 2008; 1, pp. 37-38.
310. Zhou, F.M. Wu Yiluo and new compilation of materia medica. J. Zhejiang Chin. Med. Univ.; 1989; 2, 37.
311. Lee, S.H.; Lee, S.H.; Hong, C.O.; Hur, M.; Han, J.W.; Lee, W.M.; Yi, L.; Koo, S.C. Evaluation of the availability of bolting Angelica gigas Nakai. Plant Resour. Soc. Korea; 2019; 32, pp. 318-324.
312. Xue, Z.L. Introduction and acclimatization of wild Libanotis buchtormensis. Shaanxi For. Sci. Tech.; 2011; 3, pp. 95-96.
313. Li, M.F.; Kang, T.L.; Jin, L.; Wei, J.H. Research progress on bolting and flowering of Angelica sinensis and regulation pathways. Chin. Tradit. Herb. Drugs; 2020; 51, pp. 5894-5899.
314. Wang, C.L. Understory planting management techniques of Anthriscus sylvestris. For. Prod. Spec. China; 2018; 3, pp. 42-43.
315. Chen, J.; Wang, W.L.; Sun, Y.Y.; Song, J.Z. Effects of yield and quality by mowing bolting Bupleurum chinense from different origins. Bull. Agric. Sci. Technol.; 2021; 7, pp. 218-220.
316. Wang, C.L.; Guo, Q.S.; Cheng, B.X.; Wang, C.Y.; Zhou, Y.H. Change of chemical constituents in Changium smymioides at different ages. China J. Chin. Mater. Med.; 2010; 35, pp. 2945-2949.
317. Jiang, G.H.; Ma, Y.Y.; Hou, J.; Jia, M.R.; Ma, L.; Fan, Q.J.; Tang, L. Investigation, collection and conservation of Ligusticum Chuanxiong germplasm resources. Chin. Tradit. Herb. Drugs; 2008; 39, pp. 601-604.
318. Sun, P.; Tong, W.; Ye, X.; Zhang, C.; Huang, H.Y. Correlation analysis between the growth dynamics and quality of Chuanmingshen violaceum during the late cultivation period. Nat. Prod. Res. Dev.; 2017; 29, pp. 1154-1159.
319. Zhao, Y.H.; He, G.F.; Che, S.L. High yield cultivation technology of Ligustium jeholense. Bull. Agric. Sci. Technol.; 2013; 7, pp. 215-216.
320. Ou, C.G.; Mao, J.H.; Liu, L.J.; Li, C.J.; Ren, H.F.; Zhao, Z.W.; Zhuang, F.Y. Characterising genes associated with flowering time in carrot (Daucus carota L.) using transcriptome analysis. Plant Biol. (Stuttg.); 2016; 19, pp. 286-297. [DOI: https://dx.doi.org/10.1111/plb.12519]
321. Huang, Z.X.; Ceng, Y.L. Review on the technology of propagation and cultivation for Notopterygium incisum Ting ex H. T. Chang. Anhiui Agric. Sci. Bull.; 2018; 24, pp. 45–48+50.
322. Wang, Z.W.; Zhang, Y.F.; Lu, J.; Liu, X.L.; Yang, M.H.; Chen, L. Studies on the main biological characteristics and growth and development rules of Peucedanum praeruptum. China J. Chin. Mater. Med.; 2007; 32, pp. 145-146.
323. Li, H.Y. Cultivation techniques for Saposhnikovia divaricata. Inn. Mong. Agric. Sci. Technol.; 1995; 34.
324. Liu, S.L.; Xu, Y.H.; Wang, X.H.; Lei, F.J.; Wang, Y.F.; Zhang, L.X. Research progress on the early bolting and flowering of Saposhnikovia divaricate root. Ginseng Res.; 2016; 6, pp. 52-56.
325. Liu, X.X.; Luo, M.M.; Li, M.F.; Wei, J.H. Depicting precise temperature and duration of vernalization and inhibiting early bolting and flowering of Angelica sinensis by freezing storage. Front Plant Sci.; 2022; 13, 853444. [DOI: https://dx.doi.org/10.3389/fpls.2022.853444]
326. Yan, W.; Hunt, L.A. Reanalysis of vernalization data of Wheat and Carrot. Ann. Bot.; 1999; 84, pp. 615-619. [DOI: https://dx.doi.org/10.1006/anbo.1999.0956]
327. Liu, J.H.; Guo, W.C.; Li, Y. Cultivation management, storage, and consumption of Coriander sativum. Spec. Econ. Anim. Plant.; 2017; 11, pp. 48-51.
328. Huang, L.Q.; Jin, L. Suitable Technology for Production and Processing of Angelica Sinensis; China Pharmaceutical Science and Technology Press: Beijing, China, 2018.
329. Qiu, D.Y.; Lin, H.M.; Fang, Z.S.; Li, Y.D. Effects of seedlings with different root diameters on Angelica sinensis early bolting and physiological changes during the medicine formation period. Acta Prat. Sin.; 2010; 19, pp. 100-105.
330. Wang, W.J. Analysis and control of early bolting characteristic of Angelica sinensis. J. Northwest Univ. (Nat. Sci. Ed.); 1977; 7, pp. 32-39.
331. Yao, L. Effect of shading during the nursery of Angelica sinensis on bolting rate and economic characters. Gansu Agric. Sci. Technol.; 2005; 10, pp. 54-55.
332. Li, Y.D.; Liu, F.Z.; Chen, Y.; Chai, Z.X. Standardied planting technique and the main diseases and pests of Radix Angelicae sinensis. Res. Prac. Chin. Med.; 2005; 19, pp. 23-26.
333. Yang, F.R.; Yang, H.Y.; Guo, D.Z. Preliminary study on the early bolting of Angelica dahurica and prevention methods. J. Chin. Med. Mater.; 2001; 24, 708.
334. Pu, S.C.; Shen, M.L.; Deng, C.F.; Zhang, W.W.; Wei, Z.Q. Effects of N, P and K rates and their proportions on curtail earlier bolting of Angelica dahurica var. formosana. J. Southwest Univ. (Nat. Sci. Ed.).; 2011; 33, pp. 168-172.
335. Yi, S.R.; Han, F.; Huang, Y.; Wei, Z.Q.; Xiao, Z.; Quan, J.; Cao, H.Q. Study on new technology of three-stage breeding of Angelica dahurica. Hunan Agric. Sci.; 2011; 11, pp. 15-16.
336. Meng, X.C.; Cao, L.; Lou, Z.H. Preliminary study on investigation for bolting reason and inhibition of Saposhinikovia Divaricata. Spec. Wild Econ. Anim. Plant Res.; 2004; 4, pp. 18–20+23.
337. Wang, Z.H.; Zhu, J.H.; Feng, S.X.; Wang, H.W. Effects of sowing date and eradication of reed head on bolting and yield of Saposhnikovia divaricata. Hubei Agric. Sci.; 2013; 52, pp. 4977-4979.
338. Tong, W.S.; Huang, Q.Y.; Chang, Y. Effect of planting density on bolting, yield and effective ingredient of S. divaricata. J. Northeast Agric. Univ.; 2010; 41, pp. 73-77.
339. Zhang, Y.M.; Yang, J.M.; Xu, W.M.; Wang, Z.G.; Yu, H.J. Study on the skill of Angelica acutiloba ConHolling boltiog and effect of the root. Ginseng Res.; 2016; 4, pp. 36-38.
340. Chen, X.F.; Lu, J.; Ding, D.R.; Shen, M.L.; Xie, D.M.; Li, H.F. Effect of sowing time on early bolting of Angelica dahurica. China J. Chin. Mater. Med.; 1999; 24, pp. 211-212.
341. Ding, D.R.; Lu, J.; Chen, X.F.; Shen, M.L.; Xie, D.M.; Li, H.F.; Ren, D.J. Effects of fertilizer types on early bolting and yield of Angelica dahurica. China J. Chin. Mater. Med.; 1999; 24, pp. 23-24.
342. Jiang, Y.J.; Jiang, M.Y.; Rao, F.; Huang, W.J.; Chen, C.; Wu, W. Bioinformatics analysis on the CONSTANS-like protein family in Angelica dahurica var. formosana. Mol. Plant Breed.; 2021; 19, pp. 3923-3931.
343. He, J.Z. Preliminary Study on Premature Bolting Mechanism and the Activity of Skin-Whitening of Angelica dahurica; Sichuan Agricultural University: Chengdu, China, 2018.
344. Wang, W.J.; Zhang, Z.M. Bolting characteristics and control pathways of Angelica sinensis. Acta Bot. Bor. Occ. Sin.; 1982; 2, pp. 95-104.
345. Li, M.S. On the control bolting in the early stage of Angelica sinensis (Oliv.) diels. Acta Bot. Bor. Occ. Sin.; 1983; 3, pp. 70-76.
346. Lin, H.M.; Qiu, D.Y.; Chen, Y. Effect of root diameter on early bolting rate and yield in seedling of Angelica sinensis. Chin. Tradit. Herb. Drugs; 2007; 38, pp. 1386-1389.
347. Wang, W.J. Technology and principle of seedling frozen storage of Angelica sinensis. China J. Chin. Mater. Med.; 1979; 3, pp. 1-5.
348. Zhang, E.H. A study on inhibitory effect of plant growth retardants on earlier bolting of Chinese Angelica. China J. Chin. Mater. Med.; 1999; 24, pp. 18–20+63.
349. Li, J.; Li, M.L.; Zhu, T.T.; Zhang, X.N.; Li, M.F.; Wei, J.H. Integrated transcriptomics and metabolites at different growth stages reveals the regulation mechanism of bolting and flowering of Angelica sinensis. Plant Biol. (Stuttg.); 2021; 23, pp. 574-582. [DOI: https://dx.doi.org/10.1111/plb.13249]
350. Li, M.F.; Li, J.; Wei, J.H.; Pare, P.W. Transcriptional controls for early bolting and flowering in Angelica sinensis. Plants; 2021; 10, 1931. [DOI: https://dx.doi.org/10.3390/plants10091931]
351. Mao, J.H.; Mao, S.M.; Zhuang, F.Y.; Ou, C.G.; Zhao, Z.W.; Bao, S.Y. Heredity and environmental regulation of premature bolting in carrot. Acta Agric. Bor. Sin.; 2013; 28, pp. 67-72.
352. Yang, Y.G.; Zhang, H.S.; Li, Y.L.; Wang, X.W.; Yu, J.H.; Wang, X.L. Endogenous hormone content of fleshy root in relation to early bolting in summer cultivated carrot on plateau. Acta Hortic. Sin.; 2010; 37, pp. 1102-1108.
353. Chen, Y.H.; Zhang, Y.L.; Wang, Y.; Zhang, Y.P.; Wang, Y.; Li, J.Q.; Liu, X.P. Analysis and regulation of main factors affecting flower bud differentiation and bolting in carrot. Inn. Mong. Agric. Sci. Technol.; 2002; 6, pp. 45-54.
354. Zheng, C.Y.; Li, M.L.; Zhu, D.L.; Hou, L.P.; Song, H.X. Effects of sowing time in spring on the yield and quality of carrot. J. Shanxi Agric. Sci.; 2018; 46, pp. 926–927+941.
355. Wang, B.S.; Chen, Y.M.; Lian, Y.; Zhang, Y.P.; Liu, X.R.; Yu, Y. Effects of different sowing dates on early bolting and economic traits of carrots. Vegetables; 2022; 4, pp. 28-31.
356. Bao, S.Y.; Mao, J.H.; Ou, C.G.; Zhuang, F.Y.; Zhao, Z.W. Genetic analysis and OTL mapping of early bolting of Daucus carota L. Acta Hortic. Sin.; 2011; 38, 2522.
357. Jian, Q.P.; Zheng, Y.; Zhao, R.Q.; Chen, Y.L.; Liu, Z.P.; Xian, Z.Q.; Wan, M.; Jia, F.M.; Wang, G.Q.; Huang, C. Effects of different sowing periods on early bolting and yield of Peucedanum praeruptorum. J. Mt. Agric. Biol.; 2020; 39, pp. 67-70.
358. Xu, G.; Li, P.M.; Yang, Y.; Luo, S.; Luo, C.; Deng, C.F. Effects of different sowing periods on early bolting, yield and quality of Peucedantun praeruptorum. Mod. Agric. Sci. Technol.; 2021; 20, pp. 55-57.
359. Liu, S.L.; Wang, X.H.; Gao, Y.G.; Zhao, Y.; Zhang, A.H.; Xu, Y.H.; Zhang, L.X. Transcriptomic analysis identifies differentially expressed genes (DEGs) associated with bolting and flowering in Saposhnikovia divaricata. Chin. J. Nat. Med.; 2018; 16, pp. 446-455. [DOI: https://dx.doi.org/10.1016/S1875-5364(18)30078-5] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30047466]
360. Sun, H.M. Cultivation and propagation of Bupleurum chinense DC. Fore. Pharm.; 1981; 2, pp. 39-40.
361. Li, M.; Zhang, Q.F.; Pu, G.B.; Liu, Y.Y.; Liu, Q.; Bu, X.; Zhang, Y.Q. Cloning and spatio-temporal expression analysis of flowering genes in Bupleurum chinense DC. Acta Pharm. Sin.; 2021; 56, pp. 1188-1196.
362. Chen, Y.Y.; Hu, S.Q.; Tao, S.; Yuan, C.; Xiong, M.; Peng, F.; Zhang, C. Research progress on key technology of Ligusticum chuanxiong cultivation. J. Chin. Med. Mater.; 2018; 41, pp. 1236-1240.
363. Zhao, H.Y. Research progress on key techniques of Ligusticum chuanxiong cultivation. Farm. Consult.; 2020; 1, 50.
364. Song, T. Transcriptome Sequencing and Analysis of Rhizome and Leaf in Ligusticum chuanxiong Hort; Southwest Jiaotong University: Chengdu, China, 2015.
365. Feng, X.H.; Luo, X.G.; Wang, Y.; Li, J.; Liu, X.F. Study on the cultivation technology and field management of Ligusticum sinenses. Rural Sci. Technol.; 2016; 11, pp. 14-15.
366. Zhao, W.; Yang, X.; Li, J.N.; Yu, Y. Study on the influence on the vegetative characterg the root production and quality of Ligusticum jeholense by flowers buds pruning. Chin. Wild Plant Res.; 2007; 26, pp. 46-48.
367. Yin, H.F.; Jin, X.J. Effect of controlling bolting on yield and quality from root of Notopterygium forbesii. J. Gansu Agric. Univ.; 2009; 44, pp. 77-80.
368. Jing, R.Q.; Hu, Z.H. Effect of early bolting on the structure of medicinal parts of Angelica sinensis. Acta Bot. Bor. Occ. Sin.; 1981; 1, pp. 55-61.
369. Ma, Y.Y.; Zhong, S.H.; Jia, M.R.; Xiong, Y.; Jiang, G.H.; Tang, S.W. Comparasion of macroscopic and microscopic characteristics of Chuan Bai zhi and Gong Bai zhi. Lishizhen Med. Mater. Med. Res.; 2005; 16, pp. 833-834.
370. Yang, Z.l.; Qian, S.m.; Scheid, R.N.; Lu, L.; Chen, X.s.; Liu, R.; Du, X.; Lv, X.c.; Boersma, M.D.; Scalf, M. et al. EBS is a bivalent histone reader that regulates floral phase transition in Arabidopsis. Nat. Genet.; 2018; 50, pp. 1247-1253. [DOI: https://dx.doi.org/10.1038/s41588-018-0187-8] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30082787]
371. Xu, L.; Wang, Y.; Dong, J.H.; Zhang, W.; Tang, M.J.; Zhang, W.L.; Wang, K.; Chen, Y.L.; Zhang, X.L.; He, Q. et al. A chromosome-level genome assembly of radish (Raphanus sativus L.) reveals insights into genome adaptation and differential bolting regulation. Plant Biotechnol. J.; 2023; 1, pp. 1-15. [DOI: https://dx.doi.org/10.1111/pbi.14011]
372. Song, C.; Li, X.l.; Jia, B.; Liu, L.; Wei, P.p.; Manzoor, M.A.; Wang, F.; Li, B.Y.; Wang, G.l.; Chen, C.w. et al. Comparative transcriptomics unveil the crucial genes involved in coumarin biosynthesis in Peucedanum praeruptorum Dunn. Front Plant Sci.; 2022; 13, pp. 1-14. [DOI: https://dx.doi.org/10.3389/fpls.2022.899819] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35656010]
373. Bohnert, H.J.; Nguyen, H.; Lewis, N.G. Bioengineering and Molecular Biology of Plant Pathways; Pergamon: Oxford, UK, 2008; Volume 1.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Apiaceae plants have been widely used in traditional Chinese medicine (TCM) for the removing dampness, relieving superficies, and dispelling cold, etc. In order to exploit potential applications as well as improve the yield and quality of Apiaceae medicinal plants (AMPs), the traditional use, modern pharmacological use, phytochemistry, effect of bolting and flowering (BF), and approaches for controlling BF were summarized. Currently, about 228 AMPs have been recorded as TCMs, with 6 medicinal parts, 79 traditional uses, 62 modern pharmacological uses, and 5 main kinds of metabolites. Three different degrees (i.e., significantly affected, affected to some extent, and not significantly affected) could be classed based on the yield and quality. Although the BF of some plants (e.g., Angelica sinensis) could be effectively controlled by standard cultivation techniques, the mechanism of BF has not yet been systemically revealed. This review will provide useful references for the reasonable exploration and high-quality production of AMPs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
2 Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Shenzhen 518120, China;
3 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China