Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Antimicrobial resistance (AMR) is a serious problem for modern society, not only associated with clinical environments, but also the natural environment. Conventional wastewater treatment plants (WWTPs) are important nodes for the dissemination of antibiotic resistance to the aquatic environment since they are reservoirs of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antibiotic residues. WWTPs are not designed to remove these antibiotic resistance determinants from wastewater, and as a result, they are present in treated effluent, leading to environmental and public health concerns regarding wastewater disposal and reuse. Additional treatments combined with conventional WWTPs can be barriers to the spread of AMR to the environment. In order to understand the effect of wastewater treatment methods on the removal of ARB and ARGs, an extensive bibliographic study was conducted. This review summarizes the efficiency of conventional disinfection methods, tertiary wastewater treatment, and advanced oxidation processes (AOPs) to remove ARB and ARGs from wastewater. In the context of the revised Urban Wastewater Treatment Directive 91/271/EEC, further studies are needed on the removal potential of AOPs on a full-scale, as they offer great potential for the removal of ARB and ARGs with a low formation of toxic by-products compared to conventional disinfection methods.

Details

Title
The Fate and Occurrence of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes during Advanced Wastewater Treatment and Disinfection: A Review
Author
Kalli, Maria; Noutsopoulos, Constantinos  VIAFID ORCID Logo  ; Mamais, Daniel
First page
2084
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2824015224
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.