Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To improve the seismic connectivity reliability (SCR) analysis efficiency of water distribution systems (WDS) based on Monte Carlo (MC) simulation, the quasi-Monte Carlo (QMC) method sampled by a low-discrepancy sequence is applied. Furthermore, a parallel algorithm combined with the breadth-first search algorithm for SCR analysis of WDS based on the QMC method and Compute Unified Device Architecture (CUDA) platform was proposed. A city WDS was taken as a computational example, the accuracy and efficiency of the traditional MC algorithm and parallel algorithm were compared, and the influence of the Sobol sequence and pseudo-random number sequence was analysed. The analysis results show that when 1,000,000 simulations are performed, the maximum error of the calculation results of the two methods is 0.2%, and the parallel method can obtain a six-fold speedup ratio compared with the serial method, indicating that the proposed parallel method is correct, meets the accuracy requirements, and helps to improve the SCR analysis efficiency. When the number of simulations is the same, the simulation results based on the Sobol sequence are more accurate than those based on the pseudo-random number sequence. The proposed parallel method also achieves a good acceleration effect in the SCR analysis of large-scale WDS.

Details

Title
Research on Seismic Connectivity Reliability Analysis of Water Distribution System Based on CUDA
Author
Long, Li 1 ; Yang, Huaping 1 ; Zhou, Yan 2 ; Yang, Yong 3   VIAFID ORCID Logo 

 College of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China 
 College of Civil Engineering and Architecture, China Three Gorges University, Yichang 443002, China 
 Northwest Research Institute of Engineering Investigation and Design, Xi’an 710003, China 
First page
2087
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2824044364
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.