Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Maturity is an important trait in dry pea breeding programs, but the conventional process predominately used to measure this trait can be time-consuming, labor-intensive, and prone to errors. Therefore, a more efficient and accurate approach would be desirable to support dry pea breeding programs. This study presents a novel approach for measuring dry pea maturity using machine learning algorithms and unmanned aerial systems (UASs)-collected data. We evaluated the abilities of five machine learning algorithms (random forest, artificial neural network, support vector machine, K-nearest neighbor, and naïve Bayes) to accurately predict dry pea maturity on field plots. The machine learning algorithms considered a range of variables, including crop height metrics, narrow spectral bands, and 18 distinct color and spectral vegetation indices. Backward feature elimination was used to select the most important features by iteratively removing insignificant ones until the model’s predictive performance was optimized. The study’s findings reveal that the most effective approach for assessing dry pea maturity involved a combination of narrow spectral bands, red-edge, near-infrared (NIR), and RGB-based vegetation indices, along with image textural metrics and crop height metrics. The implementation of a random forest model further enhanced the accuracy of the results, exhibiting the highest level of accuracy with a 0.99 value for all three metrics precision, recall, and f1 scores. The sensitivity analysis revealed that spectral features outperformed structural features when predicting pea maturity. While multispectral cameras achieved the highest accuracy, the use of RGB cameras may still result in relatively high accuracy, making them a practical option for use in scenarios where cost is a limiting factor. In summary, this study demonstrated the effectiveness of coupling machine learning algorithms, UASs-borne LIDAR, and multispectral data to accurately assess maturity in peas.

Details

Title
Predicting Dry Pea Maturity Using Machine Learning and Advanced Sensor Fusion with Unmanned Aerial Systems (UASs)
Author
Bazrafkan, Aliasghar 1 ; Navasca, Harry 2 ; Jeong-Hwa, Kim 2   VIAFID ORCID Logo  ; Morales, Mario 2 ; Johnson, Josephine Princy 2 ; Delavarpour, Nadia 1 ; Fareed, Nadeem 1   VIAFID ORCID Logo  ; Bandillo, Nonoy 2 ; Flores, Paulo 1   VIAFID ORCID Logo 

 Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58102, USA; [email protected] (A.B.); 
 Department of Plant Science, North Dakota State University, Fargo, ND 58102, USA[email protected] (N.B.) 
First page
2758
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2824047128
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.