Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Internet of Things technologies open up new applications for remote monitoring of forests, fields, etc. These networks require autonomous operation: combining ultra-long-range connectivity with low energy consumption. While typical low-power wide-area networks offer long-range characteristics, they fall short in providing coverage for environmental tracking in ultra-remote areas spanning hundreds of square kilometers. This paper presents a multi-hop protocol to extend the sensor’s range, whilst still enabling low-power operation: maximizing sleep time by employing prolonged preamble sampling, and minimizing the transmit energy per actual payload bit through forwarded data aggregation. Real-life experiments, as well as large-scale simulations, prove the capabilities of the proposed multi-hop network protocol. By employing prolonged preamble sampling a node’s lifespan can be increased to up to 4 years when transmitting packages every 6 h, a significant improvement compared to only 2 days when continuously listening for incoming packages. By aggregating forwarded data, a node is able to further reduce its energy consumption by up to 61%. The reliability of the network is proven: 90% of nodes achieve a packet delivery ratio of at least 70%. The employed hardware platform, network protocol stack and simulation framework for optimization are released in open access.

Details

Title
An Energy-Efficient LoRa Multi-Hop Protocol through Preamble Sampling for Remote Sensing
Author
Leenders, Guus  VIAFID ORCID Logo  ; Callebaut, Gilles  VIAFID ORCID Logo  ; Ottoy, Geoffrey  VIAFID ORCID Logo  ; Liesbet Van der Perre  VIAFID ORCID Logo  ; De Strycker, Lieven  VIAFID ORCID Logo 
First page
4994
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2824048431
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.