Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We evaluated 18 methods capable of identifying initial contact (IC) and terminal contact (TC) gait events during human running using data from a single wearable sensor on the shank or sacrum. We adapted or created code to automatically execute each method, then applied it to identify gait events from 74 runners across different foot strike angles, surfaces, and speeds. To quantify error, estimated gait events were compared to ground truth events from a time-synchronized force plate. Based on our findings, to identify gait events with a wearable on the shank, we recommend the Purcell or Fadillioglu method for IC (biases +17.4 and −24.3 ms; LOAs −96.8 to +131.6 and −137.0 to +88.4 ms) and the Purcell method for TC (bias +3.5 ms; LOAs −143.9 to +150.9 ms). To identify gait events with a wearable on the sacrum, we recommend the Auvinet or Reenalda method for IC (biases −30.4 and +29.0 ms; LOAs −149.2 to +88.5 and −83.3 to +141.3 ms) and the Auvinet method for TC (bias −2.8 ms; LOAs −152.7 to +147.2 ms). Finally, to identify the foot in contact with the ground when using a wearable on the sacrum, we recommend the Lee method (81.9% accuracy).

Details

Title
Unsupervised Gait Event Identification with a Single Wearable Accelerometer and/or Gyroscope: A Comparison of Methods across Running Speeds, Surfaces, and Foot Strike Patterns
Author
Kiernan, Dovin 1   VIAFID ORCID Logo  ; Kristine Dunn Siino 2 ; Hawkins, David A 3 

 Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA 95616, USA; [email protected] 
 Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA 
 Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA 95616, USA; [email protected]; Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA 
First page
5022
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2824058112
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.