Abstract

Impurity-vacancy centers in diamond offer a new class of robust photon sources with versatile quantum properties. While individual color centers commonly act as single-photon sources, their ensembles have been theoretically predicted to have tunable photon-emission statistics. Importantly, the particular type of excitation affects the emission properties of a color center ensemble within a diamond crystal. While optical excitation favors non-synchronized excitation of color centers within an ensemble, electron-beam excitation can synchronize the emitters excitation and thereby provides a control of the second-order correlation function g2(0). In this letter, we demonstrate experimentally that the photon stream from an ensemble of color centers can exhibit g2(0) both above and below unity, thereby confirming long standing theoretical predictions by Meuret et al. [S. Meuret, L. H. G. Tizei, T. Cazimajou, et al., “Photon bunching in cathodoluminescence,” Phys. Rev. Lett., vol. 114, no. 19, p. 197401, 2015.]. Such a photon source based on an ensemble of few color centers in a diamond crystal provides a highly tunable platform for informational technologies operating at room temperature.

Details

Title
Sub-to-super-Poissonian photon statistics in cathodoluminescence of color center ensembles in isolated diamond crystals
Author
Fiedler, Saskia; Morozov, Sergii; Komisar, Danylo; Ekimov, Evgeny A; Kulikova, Liudmila F; Davydov, Valery A; Agafonov, Viatcheslav N; Kumar, Shailesh; Wolff, Christian; Bozhevolnyi, Sergey I; Mortensen, N Asger
Pages
2231-2237
Publication year
2023
Publication date
2023
Publisher
Walter de Gruyter GmbH
ISSN
21928606
e-ISSN
21928614
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2824881785
Copyright
© 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.