Abstract

Malaria results in more than 500,000 deaths per year and the causative Plasmodium parasites continue to develop resistance to all known agents, including different antimalarial combinations. The class XIV myosin motor PfMyoA is part of a core macromolecular complex called the glideosome, essential for Plasmodium parasite mobility and therefore an attractive drug target. Here, we characterize the interaction of a small molecule (KNX-002) with PfMyoA. KNX-002 inhibits PfMyoA ATPase activity in vitro and blocks asexual blood stage growth of merozoites, one of three motile Plasmodium life-cycle stages. Combining biochemical assays and X-ray crystallography, we demonstrate that KNX-002 inhibits PfMyoA using a previously undescribed binding mode, sequestering it in a post-rigor state detached from actin. KNX-002 binding prevents efficient ATP hydrolysis and priming of the lever arm, thus inhibiting motor activity. This small-molecule inhibitor of PfMyoA paves the way for the development of alternative antimalarial treatments.

Myosin A (PfMyoA) is essential for the pathogenesis of Plasmodium falciparum, the causative agent of malaria. Here we decipher the mechanism by which a small molecule inhibitor (KNX-002) of PfMyoA impedes its motor activity.

Details

Title
Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design
Author
Moussaoui, Dihia 1 ; Robblee, James P. 2 ; Robert-Paganin, Julien 3   VIAFID ORCID Logo  ; Auguin, Daniel 4   VIAFID ORCID Logo  ; Fisher, Fabio 5 ; Fagnant, Patricia M. 2 ; Macfarlane, Jill E. 2 ; Schaletzky, Julia 6   VIAFID ORCID Logo  ; Wehri, Eddie 6 ; Mueller-Dieckmann, Christoph 7 ; Baum, Jake 8   VIAFID ORCID Logo  ; Trybus, Kathleen M. 2   VIAFID ORCID Logo  ; Houdusse, Anne 3   VIAFID ORCID Logo 

 Sorbonne Université, Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Paris, France (GRID:grid.462844.8) (ISNI:0000 0001 2308 1657); European Synchrotron Radiation Facility (ESRF), Structural Biology group, Grenoble, France (GRID:grid.5398.7) (ISNI:0000 0004 0641 6373) 
 University of Vermont, Department of Molecular Physiology & Biophysics, Burlington, USA (GRID:grid.59062.38) (ISNI:0000 0004 1936 7689) 
 Sorbonne Université, Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Paris, France (GRID:grid.462844.8) (ISNI:0000 0001 2308 1657) 
 Sorbonne Université, Structural Motility, Institut Curie, Université Paris Sciences et Lettres, Paris, France (GRID:grid.462844.8) (ISNI:0000 0001 2308 1657); Université d’Orléans, INRAE, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Orléans, France (GRID:grid.112485.b) (ISNI:0000 0001 0217 6921) 
 Imperial College London, Department of Life Sciences, London, UK (GRID:grid.7445.2) (ISNI:0000 0001 2113 8111) 
 Drug Discovery Center, Center for Emerging and Neglected Diseases, Berkeley, USA (GRID:grid.59062.38) 
 European Synchrotron Radiation Facility (ESRF), Structural Biology group, Grenoble, France (GRID:grid.5398.7) (ISNI:0000 0004 0641 6373) 
 Imperial College London, Department of Life Sciences, London, UK (GRID:grid.7445.2) (ISNI:0000 0001 2113 8111); Faculty of Medicine & Health, UNSW Sydney, School of Medical Sciences, Kensington, Australia (GRID:grid.1005.4) (ISNI:0000 0004 4902 0432) 
Pages
3463
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2825583263
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.