Full Text

Turn on search term navigation

© 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Humans are able to adapt to the fast-changing world by estimating statistical regularities of the environment. Although fear can profoundly impact adaptive behaviors, the computational and neural mechanisms underlying this phenomenon remain elusive. Here, we conducted a behavioral experiment (n = 21) and a functional magnetic resonance imaging experiment (n = 37) with a novel cue-biased adaptation learning task, during which we simultaneously manipulated emotional valence (fearful/neutral expressions of the cue) and environmental volatility (frequent/infrequent reversals of reward probabilities). Across 2 experiments, computational modeling consistently revealed a higher learning rate for the environment with frequent versus infrequent reversals following neutral cues. In contrast, this flexible adjustment was absent in the environment with fearful cues, suggesting a suppressive role of fear in adaptation to environmental volatility. This suppressive effect was underpinned by activity of the ventral striatum, hippocampus, and dorsal anterior cingulate cortex (dACC) as well as increased functional connectivity between the dACC and temporal-parietal junction (TPJ) for fear with environmental volatility. Dynamic causal modeling identified that the driving effect was located in the TPJ and was associated with dACC activation, suggesting that the suppression of fear on adaptive behaviors occurs at the early stage of bottom-up processing. These findings provide a neuro-computational account of how fear interferes with adaptation to volatility during dynamic environments.

Details

Title
Neurocomputational mechanisms underlying fear-biased adaptation learning in changing environments
Author
Zhihao Wang https://orcid.org/0000-0001-6292-9307; Tian Nan; Goerlich, Katharina S; Li, Yiman; Aleman, André; Luo, Yuejia; Pengfei Xu https://orcid.org/0000-0002-1340-8852
First page
e3001724
Section
Research Article
Publication year
2023
Publication date
May 2023
Publisher
Public Library of Science
ISSN
15449173
e-ISSN
15457885
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2826803543
Copyright
© 2023 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.