Full text

Turn on search term navigation

© 2023. This work is published under http://aprendeenlinea.udea.edu.co/revistas/index.php/ingenieria/issue/archive (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

RESUMEN: Las industrias más importantes reconocidas como la aeroespacial, automotriz, entre otras, han estipulado nuevos requerimientos para el comportamiento de los materiales que incluyen altas propiedades específicas, mecánicas, y térmicas. De acuerdo con esto, los nanocompuestos han surgido como una solución. Sin embargo, la manufactura de estos materiales implica problemas de costo-tiempo que no permiten su aplicación industrial, además, el desconocimiento en la predicción de sus propiedades mecánicas es un obstáculo. Por esto mismo, importantes autores se han enfocado en el desarrollo de modelos computacionales para la predicción del comportamiento mecánico en compuestos nano-reforzados. En el presente trabajo, se realiza una evaluación comparativa de los principales modelos computacionales para la predicción de resistencia a tracción de nano-compuestos. En primer lugar, una nueva taxonomía de estos modelos es propuesta, permitiendo identificar las principales variables experimentales, evolución de los modelos y precisión.

Alternate abstract:

Some of the most important industries, such as aerospace, automotive, among others, have stipulated new requirements for materials behavior that include high specific, mechanical, and thermal properties. According to this, nanocomposites have emerged to satisfy these requirements. However, manufacturing these nanocomposites implies cost and time-consuming problems that do not allow their use in technological applications; additionally, the lack of knowledge about the prediction of their mechanical properties is an obstacle to its technological implementation. Therefore, several studies have focused on the development of computational models to predict the mechanical behavior of nano-reinforced composites. In the present work, a comparative assessment of the main computational models for predicting the tensile strength of nanocomposites is carried out. Firstly, a new taxonomy of these models is proposed, which allows identifying the main experimental variables, model evolution, and precision. With the categorization, computational algorithms are developed for these models for predicting the tensile strength of nanocomposites, accomplishing a comparative analysis of accuracy, robustness, and time-cost among them. The precision of these models is evaluated by deeming benchmark experimental works focused on the tensile strength of nanocomposites. The results obtained demonstrated a minimum relative error of 44.7%, 10.1%, and 10.6% for First-Generation, Second-Generation, and Third-Generation models, respectively.

Details

Title
Comparative assessment of computational models for the effective tensile strength of nano-reinforced composites
Author
Duarte-García, Mateo 1 ; Patiño-Arcila, Iván David 1 ; Isaza-Merino, César Augusto 2 

 Grupo de Investigación e Innovación Ambiental (GIIAM), Facultad de Ingeniería, Institución Universitaria Pascual Bravo. Calle 54A # 30-01. C. P. 050034. Medellín, Colombia 
 Grupo de Investigación e Innovación en Energía (GIIEN), Facultad de Ingeniería, Institución Universitaria Pascual Bravo. Calle 54A # 30-01. C. P. 050034. Medellín, Colombia 
Pages
115-123
Publication year
2023
Publication date
Jul-Sep 2023
Publisher
Universidad de Antioquía
ISSN
01206230
e-ISSN
24222844
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2827028239
Copyright
© 2023. This work is published under http://aprendeenlinea.udea.edu.co/revistas/index.php/ingenieria/issue/archive (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.