Abstract

Precise, scalable, and quantitative evaluation of whole slide images is crucial in neuropathology. We release a deep learning model for rapid object detection and precise information on the identification, locality, and counts of cored plaques and cerebral amyloid angiopathy (CAA). We trained this object detector using a repurposed image-tile dataset without any human-drawn bounding boxes. We evaluated the detector on a new manually-annotated dataset of whole slide images (WSIs) from three institutions, four staining procedures, and four human experts. The detector matched the cohort of neuropathology experts, achieving 0.64 (model) vs. 0.64 (cohort) average precision (AP) for cored plaques and 0.75 vs. 0.51 AP for CAAs at a 0.5 IOU threshold. It provided count and locality predictions that approximately correlated with gold-standard human CERAD-like WSI scoring (p = 0.07 ± 0.10). The openly-available model can quickly score WSIs in minutes without a GPU on a standard workstation.

A deep learning model rapidly identifies locality and counts of cored plaques and cerebral amyloid angiopathy in whole slide images comparably to human experts and without a GPU on a standard workstation.

Details

Title
Learning fast and fine-grained detection of amyloid neuropathologies from coarse-grained expert labels
Author
Wong, Daniel R. 1   VIAFID ORCID Logo  ; Magaki, Shino D. 2 ; Vinters, Harry V. 3 ; Yong, William H. 4 ; Monuki, Edwin S. 4 ; Williams, Christopher K. 2 ; Martini, Alessandra C. 4   VIAFID ORCID Logo  ; DeCarli, Charles 5   VIAFID ORCID Logo  ; Khacherian, Chris 4 ; Graff, John P. 6   VIAFID ORCID Logo  ; Dugger, Brittany N. 6   VIAFID ORCID Logo  ; Keiser, Michael J. 1   VIAFID ORCID Logo 

 University of California, San Francisco, Institute for Neurodegenerative Diseases, San Francisco, USA (GRID:grid.266102.1) (ISNI:0000 0001 2297 6811); University of California, Bakar Computational Health Sciences Institute, San Francisco, USA (GRID:grid.266102.1) (ISNI:0000 0001 2297 6811); University of California, San Francisco, Department of Pharmaceutical Chemistry, San Francisco, USA (GRID:grid.266102.1) (ISNI:0000 0001 2297 6811); University of California, San Francisco, Department of Bioengineering and Therapeutic Sciences, San Francisco, USA (GRID:grid.266102.1) (ISNI:0000 0001 2297 6811); University of California, San Francisco, Kavli Institute for Fundamental Neuroscience, San Francisco, USA (GRID:grid.266102.1) (ISNI:0000 0001 2297 6811) 
 University of California, Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718) 
 University of California, Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718); David Geffen School of Medicine at University of California, Los Angeles, Department of Neurology, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718) 
 University of California, Department of Pathology & Laboratory Medicine, Irvine, USA (GRID:grid.266093.8) (ISNI:0000 0001 0668 7243) 
 University of California-Davis, Department of Neurology, School of Medicine, Davis, USA (GRID:grid.27860.3b) (ISNI:0000 0004 1936 9684) 
 University of California, Davis, Department of Pathology and Laboratory Medicine, School of Medicine, Sacramento, USA (GRID:grid.27860.3b) (ISNI:0000 0004 1936 9684) 
Pages
668
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
23993642
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829117089
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.