It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Ginkgolic acid is a natural plant antifungal substance with important biological activities, present in the testa of Ginkgo biloba. This research aims to analyse the antifungal action of ginkgolic acid against pathogenic fungi. Ginkgolic acid was analyzed by HPLC and FTIR, and the in vitro inhibitory activities of ginkgolic acid against pathogenic fungi has been investigated. Results showed that ginkgolic acid was a small hydrophobic molecule composed of five ginkgolic acids and their derivatives, with the alkyl and phenolic hydroxyl groups being located on the skeleton of the aromatic ring. Among Nigrospora oryzae (N. oryzae), Alternaria alternata (A. alternata) and Penicillium expansum (P. expansum), ginkgolic acid showed the strongest inhibition against N. oryzae, and the inhibition rate of ginkgolic acid at 5 mg · mL-1 reached 65.82%. Ginkgolic acid lysed the cell membrane of N. oryzae, causing the leaking of the mycelial protein and enhancement of the permeability of the cell membrane, which caused the electrical conductivity of the liquid medium to increase. In addition, it also decreased the activities of superoxide dismutase and catalase in the mycelium of N. oryzae, thereby weakening the cell’s protective function by damaging the integrity of the biomembrane. Furthermore, ginkgolic acid can effectively protect the leaves of Epipremnum aureum from infection by N. oryzae. It was concluded that ginkgolic acid effectively inhibited the activity of N. oryzae.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Food Science and Engineering, School of Food Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China