Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Jimbo-Miwa equation (JME) that describes certain interesting (3+1)-dimensional waves in plasma physics is studied in this work. The Hirota bilinear equation is developed via the Cole-Hopf transform. Then, the symbolic computation, together with the ansatz function schemes, are utilized to seek exact solutions. Some new solutions, such as the multi-wave complexiton solution (MWCS), multi-wave solution (MWS) and periodic lump solution (PLS), are successfully constructed. Additionally, different types of travelling wave solutions (TWS), including the dark, bright-dark and singular periodic wave solutions, are disclosed by employing the sub-equation method. Finally, the physical characteristics and interaction behaviors of the extracted solutions are depicted graphically by assigning appropriate parameters. The obtained outcomes in this paper are more general and newer. Additionally, they reveal that the used methods are concise, direct, and can be employed to study other partial differential equations (PDEs) in physics.

Details

Title
Study on the Nonlinear Dynamics of the (3+1)-Dimensional Jimbo-Miwa Equation in Plasma Physics
Author
Xu, Peng 1 ; Bing-Qi, Zhang 1 ; Huang, Huan 1 ; Kang-Jia, Wang 2   VIAFID ORCID Logo 

 School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665, China 
 School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China 
First page
592
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20751680
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829712329
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.