Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Age-related diseases, such as Parkinson’s disease, Alzheimer’s disease, cardiovascular diseases, cancers, and age-related macular disease, have become increasingly prominent as the population ages. Oxygen is essential for living organisms, but it may also cause disease when it is transformed into reactive oxygen species via biological processes in cells. Most of the production of ROS occurs in mitochondrial complexes I and III. The accumulation of ROS in cells causes oxidative stress, which plays a crucial role in human ageing and many diseases. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a key antioxidant transcription factor that plays a central role in many diseases and ageing in general. It regulates many downstream antioxidative enzymes when cells are exposed to oxidative stress. A basic-region leucine zipper (bZIP) transcription factor, MAF, specifically the small MAF subfamily (sMAFs), forms heterodimers with Nrf2, which bind with Maf-recognition elements (MAREs) in response to oxidative stress. The role of this complex in the human retina remains unclear. This review summarises the current knowledge about Nrf2 and its downstream signalling, especially its cofactor—MAF, in ageing and diseases, with a focus on the retina. Since Nrf2 is the master regulator of redox homeostasis in cells, we hypothesise that targeting Nrf2 is a promising therapeutic approach for many age-related diseases.

Details

Title
The Role of Nrf2/sMAF Signalling in Retina Ageing and Retinal Diseases
Author
Zhang, Jialing 1 ; Zhang, Ting 1 ; Zeng, Shaoxue 1   VIAFID ORCID Logo  ; Zhang, Xinyuan 2   VIAFID ORCID Logo  ; Zhou, Fanfan 3 ; Gillies, Mark C 1 ; Zhu, Ling 1 

 Save Sight Institute, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia 
 Department of Ocular Fundus Diseases, Beijing Tongren Eye Centre, Tongren Hospital, Capital Medical University, Beijing 100073, China 
 Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia 
First page
1512
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22279059
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829756491
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.