Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

In this study, we examined the effects of nine DIF derivatives on chemotactic cell movement toward cAMP and compared their chemotaxis-modulating activity and stalk cell differentiation–inducing activity in wild-type and mutant strains in Dictyostelium discoideum. We found that the DIF derivatives differentially affected chemotaxis and stalk cell differentiation, suggesting that DIF-1 and DIF-2 have at least three receptors: one for stalk cell induction and two for chemotaxis modulation.

Abstract

Differentiation-inducing factors 1 and 2 (DIF-1 and DIF-2) are small lipophilic signal molecules that induce stalk cell differentiation but differentially modulate chemotaxis toward cAMP in the cellular slime mold Dictyostelium discoideum; DIF-1 suppresses chemotactic cell movement in shallow cAMP gradients, whereas DIF-2 promotes it. The receptor(s) for DIF-1 and DIF-2 have not yet been identified. We examined the effects of nine derivatives of DIF-1 on chemotactic cell movement toward cAMP and compared their chemotaxis-modulating activity and stalk cell differentiation–inducing activity in wild-type and mutant strains. The DIF derivatives differentially affected chemotaxis and stalk cell differentiation; for example, TM-DIF-1 suppressed chemotaxis and showed poor stalk-inducing activity, DIF-1(3M) suppressed chemotaxis and showed strong stalk-inducing activity, and TH-DIF-1 promoted chemotaxis. These results suggest that DIF-1 and DIF-2 have at least three receptors: one for stalk cell induction and two for chemotaxis modulation. In addition, our results show that the DIF derivatives can be used to analyze the DIF-signaling pathways in D. discoideum.

Details

Title
Derivatives of Differentiation-Inducing Factor 1 Differentially Control Chemotaxis and Stalk Cell Differentiation in Dictyostelium discoideum
Author
Kuwayama, Hidekazu 1   VIAFID ORCID Logo  ; Kikuchi, Haruhisa 2   VIAFID ORCID Logo  ; Kubohara, Yuzuru 3   VIAFID ORCID Logo 

 Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; [email protected] 
 Division of Natural Medicines, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan; [email protected] 
 Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai 270-1695, Japan 
First page
873
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20797737
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829761957
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.