Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

PEDOT:PSS (polyethylene dioxythiophene:polystyrenesulfonate) is a commonly used hole injection layer (HIL) in optoelectronic devices due to its high conductive properties and work function. However, the acidic and hygroscopic nature of PEDOT:PSS can be problematic for device stability over time. To address this issue, in this study we demonstrated the potential of an organic–inorganic hybrid HIL by incorporating solution-processed WOx nanoparticles (WOx NPs) into the PEDOT:PSS mixture. This hybrid solution was found to have a superior hole transport ability and low Ohmic contact resistance contributing to higher brightness (~62,000 cd m−2) and current efficiency (13.1 cd A−1) in the manufactured quantum-dot-based light-emitting diodes (QLEDs). In addition, the resulting devices achieved a relative operational lifetime of 7071 h, or approximately twice that of traditional QLEDs with PEDOT:PSS HILs. The proposed method is an uncomplicated, reliable, and low-cost way to achieve long operational lifetimes without sacrificing efficiency in optoelectronic devices.

Details

Title
Enhanced Performances of Quantum Dot Light-Emitting Diodes with an Organic–Inorganic Hybrid Hole Injection Layer
Author
Chen, Ling 1 ; Jiang, Donghuai 1 ; Du, Wenjing 1 ; Shang, Jifang 1 ; Li, Dongdong 2 ; Liu, Shaohui 1 

 Henan Key Laboratory of Electronic Ceramic Materials and Application, College of Materials Engineering, Henan University of Engineering, Zhengzhou 451191, China 
 Huaibei Yeolight Technology Co., Ltd., Huaibei 235000, China 
First page
966
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829794371
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.