Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Two-level DC/AC inverter topologies are widely used for low voltage and high voltage applications in power systems and industrial areas. Space Vector Modulation (SVM) is a popular Pulse-Width Modulation technique used for controlling the inverters and providing the efficient energy conversion from DC sources. However, applications of SVM-based studies are limited in the Power Electronics Laboratory (PEL) due to the vital risks associated with high voltage applications, and it is not easily learned through mathematical analysis and visual learning without implementation by undergraduate students. A simulation and experimental setup of an SVM-controlled two-level, three-phase inverter was presented in this study for undergraduate students to learn its basics in the PEL. Several programs were used to simulate the inverter in the classroom environment and to design a power circuit and microcontroller-based printed circuit board of the inverter for PEL experiments. The two case studies were given. In the case results, the output voltage waveforms of simulation and experimental inverters were compared to show the validation of simulation results. With this study, the students’ experience is enhanced in electronic circuit design, programming, coordination with hardware and software development activities, self-learning, and teamwork. Additionally, practical applications increase undergraduate students’ interest in Power Electronics Courses and reinforce their knowledge from lecture and laboratory studies.

Details

Title
Student Project-Based Space Vector Modulation Technique for Power Electronics Laboratory
Author
Saribulut, Lutfu 1   VIAFID ORCID Logo  ; Ameen, Arman 2   VIAFID ORCID Logo 

 Department of Electrical-Electronics Engineering, Adana Alparslan Turkes Science and Technology University, Adana 01250, Turkey 
 Department of Building Engineering, Energy Systems and Sustainability Science, University of Gävle, 801 76 Gävle, Sweden 
First page
2714
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829799907
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.