Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Compared with ground-based light detection and ranging (LiDAR) data, the differential distribution of the quantity and quality of point cloud data from airborne LiDAR poses difficulties for tree species classification. To verify the feasibility of using the PointNet++ algorithm for point cloud tree species classification with airborne LiDAR data, we selected 11 tree species from the Minjiang River Estuary Wetland Park in Fuzhou City and Sanjiangkou Ecological Park. Training and testing sets were constructed through pre-processing and segmentation, and direct and enhanced down-sampling methods were used for tree species classification. Experiments were conducted to adjust the hyperparameters of the proposed algorithm. The optimal hyperparameter settings used the multi-scale sampling and grouping (MSG) method, down-sampling of the point cloud to 2048 points after enhancement, and a batch size of 16, which resulted in 91.82% classification accuracy. PointNet++ could be used for tree species classification using airborne LiDAR data with an insignificant impact on point cloud quality. Considering the differential distribution of the point cloud quantity, enhanced down-sampling yields improved the classification results compared to direct down-sampling. The MSG classification method outperformed the simplified sampling and grouping classification method, and the number of epochs and batch size did not impact the results.

Details

Title
Tree Species Classification Based on PointNet++ and Airborne Laser Survey Point Cloud Data Enhancement
Author
Fan, Zhongmou; Jinhuang Wei; Zhang, Ruiyang; Zhang, Wenxuan
First page
1246
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829808567
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.