Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study investigated the influence of incorporating Biosilicate® on the physico-mechanical and biological properties of glass ionomer cement (GIC). This bioactive glass ceramic (23.75% Na2O, 23.75% CaO, 48.5% SiO2, and 4% P2O5) was incorporated by weight (5%, 10%, or 15%) into commercially available GICs (Maxxion R and Fuji IX GP). Surface characterization was made by SEM (n = 3), EDS (n = 3), and FTIR (n = 1). The setting and working (S/W time) times (n = 3) and compressive strength (CS) were analyzed (n = 10) according to ISO 9917-1:2007. The ion release (n = 6) was determined and quantified by ICP OES and by UV-Vis for Ca, Na, Al, Si, P, and F. To verify cell cytotoxicity, stem cells from the apical papilla (SCAP) were exposed to eluates (n = 3, at a ratio of 1.8 cm2/mL) and analyzed 24 h post-exposure. Antimicrobial activity against Streptococcus mutans (ATCC 25175, NCTC 10449) was analyzed by direct contact for 2 h (n = 5). The data were submitted for normality and lognormality testing. One-way ANOVA and Tukey’s test were applied for the working and setting time, compressive strength, and ion release data. Data from cytotoxicity and antimicrobial activity were submitted for Kruskal–Wallis’ testing and Dunn’s post hoc test (α = 0.05). Among all experimental groups, only those with 5% (wt) of Biosilicate® showed better surface quality. Only M5% showed a comparable W/S time to the original material (p = 0.7254 and p = 0.5912). CS was maintained for all Maxxion R groups (p > 0.0001) and declined for Fuji IX experimental groups (p < 0.0001). The Na, Si, P, and F ions released were significantly increased for all Maxxion R and Fuji IX groups (p < 0.0001). Cytotoxicity was increased only for Maxxion R with 5% and 10% of Biosilicate®. A higher inhibition of S. mutans growth was observed for Maxxion R with 5% of Biosilicate® (less than 100 CFU/mL), followed by Maxxion R with 10% of Biosilicate® (p = 0.0053) and Maxxion R without the glass ceramic (p = 0.0093). Maxxion R and Fuji IX presented different behaviors regarding Biosilicate® incorporation. The impacts on physico-mechanical and biological properties were different depending on the GIC, but therapeutic ion release was increased for both materials.

Details

Title
Effect of Biosilicate® Addition on Physical–Mechanical and Biological Properties of Dental Glass Ionomer Cements
Author
Gabriela de Alencar Pinto Magalhães 1   VIAFID ORCID Logo  ; Thomson, Joshua J 2   VIAFID ORCID Logo  ; Smoczer, Cristine 2 ; Young, Laura Ann 2 ; Matos, Adaias O 3 ; Rafael Rocha Pacheco 4   VIAFID ORCID Logo  ; Souza, Maria Trevelin 5 ; Edgar Dutra Zanotto 5   VIAFID ORCID Logo  ; Regina Maria Puppin Rontani 1   VIAFID ORCID Logo 

 Department of Health Sciences and Pediatric Dentistry, Pediatric Division, Piracicaba Dental School, UNICAMP, State University of Campinas, Piracicaba 13414-903, Brazil; [email protected] 
 Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI 48208, USA 
 Division of Clinical Essentials and Simulation, University of Detroit Mercy School of Dentistry, Detroit, MI 48208, USA 
 Department of Restorative Sciences, Dental College of Georgia at Augusta University, Augusta, GA 30912, USA 
 Vitreous Materials Laboratory, Department of Materials Engineering, Center for Research, Education and Technology in Vitreous Materials (CeRTEV), Federal University of São Carlos (UFSCar), São Carlos 13565-905, Brazil 
First page
302
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20794983
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829814706
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.