Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The recent pandemic years have prompted the scientific community to increasingly search for and adopt new and more efficient therapeutic and diagnostic approaches to deal with a new infection. In addition to the development of vaccines, which has played a leading role in fighting the pandemic, the development of monoclonal antibodies has also represented a valid approach in the prevention and treatment of many cases of CoronaVirus Disease 2019 (COVID-19). Recently, we reported the development of a human antibody, named D3, showing neutralizing activity against different SARS-CoV-2 variants, wild-type, UK, Delta and Gamma variants. Here, we have further characterized with different methods D3’s ability to bind the Omicron-derived recombinant RBD by comparing it with the antibodies Cilgavimab and Tixagevimab, recently approved for prophylactic use of COVID-19. We demonstrate here that D3 binds to a distinct epitope from that recognized by Cilgavimab and shows a different binding kinetic behavior. Furthermore, we report that the ability of D3 to bind the recombinant Omicron RBD domain in vitro results in a good ability to also neutralize Omicron-pseudotyped virus infection in ACE2-expressing cell cultures. We point out here that D3 mAb maintains a good ability to recognize both the wild-type and Omicron Spike proteins, either when used as recombinant purified proteins or when expressed on pseudoviral particles despite the different variants, making it particularly useful both from a therapeutic and diagnostic point of view. On the basis of these results, we propose to exploit this mAb for combinatorial treatments with other neutralizing mAbs to increase their therapeutic efficacy and for diagnostic use to measure the viral load in biological samples in the current and future pandemic waves of coronaviruses.

Details

Title
Comparative Analysis of a Human Neutralizing mAb Specific for SARS-CoV-2 Spike-RBD with Cilgavimab and Tixagevimab for the Efficacy on the Omicron Variant in Neutralizing and Detection Assays
Author
Passariello, Margherita 1 ; Esposito, Speranza 2 ; Manna, Lorenzo 1 ; Rosa Rapuano Lembo 3 ; Zollo, Immacolata 2   VIAFID ORCID Logo  ; Sasso, Emanuele 1   VIAFID ORCID Logo  ; Amato, Felice 1   VIAFID ORCID Logo  ; De Lorenzo, Claudia 1   VIAFID ORCID Logo 

 Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, NA, Italy; [email protected] (M.P.); [email protected] (L.M.); [email protected] (E.S.); Ceinge—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy; [email protected] (S.E.); [email protected] (R.R.L.); [email protected] (I.Z.) 
 Ceinge—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy; [email protected] (S.E.); [email protected] (R.R.L.); [email protected] (I.Z.) 
 Ceinge—Biotecnologie Avanzate s.c. a.r.l., Via Gaetano Salvatore 486, 80145 Naples, NA, Italy; [email protected] (S.E.); [email protected] (R.R.L.); [email protected] (I.Z.); European School of Molecular Medicine, University of Milan, 20122 Milan, MI, Italy 
First page
10053
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829823509
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.