Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Building integrated photovoltaic (BIPV) systems can achieve high yields through high percentages of building envelope surface coverage associated with material savings by substituting conventional building envelope components and avoiding land-use change to install open-land PV installations. This article discusses the life cycle assessment (LCA) and the life cycle costing (LCC) of BIPV systems in timber-hybrid building extensions and envelope renovation systems of three exemplary buildings in the Republic of Korea: apartment, mixed-use commercial/industrial, and low-rise multi-unit residential. The BIPV system’s electricity production was quantified with simulation tools. Minimum and average carbon LCAs were calculated using a global product inventory database for 50 years. Greenhouse gas (GHG) emission savings by substituting conventional energy supplies were calculated based on the associated primary energy demands. LCC calculations were based on international datasets for BIPV LCC for 25 and 50 years. As a result, the BIPV system-associated GHG emissions can be decreased by up to 30% with a payback time of 12 (apartment) to 41 (mixed-use building) years for buildings with full PV coverage. The positive cumulative net present value (NPV) for both LCC scenarios encourages economic investments in building renovations with BIPV systems.

Details

Title
Carbon Life Cycle Assessment and Costing of Building Integrated Photovoltaic Systems for Deep Low-Carbon Renovation
Author
Amoruso, Fabrizio M; Schuetze, Thorsten  VIAFID ORCID Logo 
First page
9460
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829884980
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.