Full text

Turn on search term navigation

© 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A simplified hydroclimatic modelling workflow is proposed to quantify the impact of climate change on water discharge without resorting to meteorological observations. This alternative approach is designed by combining asynchronous hydroclimatic modelling and quantile perturbation applied to streamflow observations. Calibration is run by forcing hydrologic models with raw climate model outputs using an objective function that excludes the day-to-day temporal correlation between simulated and observed hydrographs. The resulting hydrologic scenarios provide useful and reliable information considering that they (1) preserve trends and physical consistency between simulated climate variables, (2) are implemented from a modelling cascade despite observation scarcity, and (3) support the participation of end-users in producing and interpreting climate change impacts on water resources. The proposed modelling workflow is implemented over four sub-catchments of the Chaudière River, Canada, using nine North American Coordinated Regional Climate Downscaling Experiment (NA-CORDEX) simulations and a pool of lumped conceptual hydrologic models. Results confirm that the proposed workflow produces equivalent projections of the seasonal mean flows in comparison to a conventional hydroclimatic modelling approach. They also highlight the sensibility of the proposed workflow to strong biases affecting raw climate model outputs, frequently causing outlying projections of the hydrologic regime. Inappropriate forcing climate simulations were however successfully identified (and excluded) using the performance of the simulated hydrologic response as a ranking criterion. Results finally suggest that further works should be conducted to confirm the reliability of the proposed workflow to assess the impact of climate change on high- and low-flow events.

Details

Title
Producing reliable hydrologic scenarios from raw climate model outputs without resorting to meteorological observations
Author
Ricard, Simon 1   VIAFID ORCID Logo  ; Lucas-Picher, Philippe 2   VIAFID ORCID Logo  ; Thiboult, Antoine 3 ; Anctil, François 3   VIAFID ORCID Logo 

 Pôle de recherche en protection des ressources, Institut de recherche et de développement en agroenvironnement (IRDA), Quebec, Canada; Département de génie civil et de génie des eaux, Université Laval, Quebec, Canada 
 Centre pour l'Étude et la Simulation du Climat à l'Échelle Régionale (ESCER), Département des sciences de la Terre et de l'atmosphère, Université du Québec à Montréal, Montréal, Canada; Groupe de Météorologie de Grande Échelle et Climat (GMGEC), Centre National de Recherches Météorologiques (CNRM), Université de Toulouse, Météo-France, Centre National de la Recherche Scientifique (CNRS), Toulouse, France 
 Département de génie civil et de génie des eaux, Université Laval, Quebec, Canada 
Pages
2375-2395
Publication year
2023
Publication date
2023
Publisher
Copernicus GmbH
ISSN
10275606
e-ISSN
16077938
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2831167067
Copyright
© 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.