Full Text

Turn on search term navigation

© 2023, Porte, Silva-Gomes et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Streptococcus pneumoniae is a major pathogen in children, elderly subjects, and immunodeficient patients. Pentraxin 3 (PTX3) is a fluid-phase pattern recognition molecule (PRM) involved in resistance to selected microbial agents and in regulation of inflammation. The present study was designed to assess the role of PTX3 in invasive pneumococcal infection. In a murine model of invasive pneumococcal infection, PTX3 was strongly induced in non-hematopoietic (particularly, endothelial) cells. The IL-1β/MyD88 axis played a major role in regulation of the Ptx3 gene expression. Ptx3−/− mice presented more severe invasive pneumococcal infection. Although high concentrations of PTX3 had opsonic activity in vitro, no evidence of PTX3-enhanced phagocytosis was obtained in vivo. In contrast, Ptx3-deficient mice showed enhanced recruitment of neutrophils and inflammation. Using P-selectin-deficient mice, we found that protection against pneumococcus was dependent upon PTX3-mediated regulation of neutrophil inflammation. In humans, PTX3 gene polymorphisms were associated with invasive pneumococcal infections. Thus, this fluid-phase PRM plays an important role in tuning inflammation and resistance against invasive pneumococcal infection.

Details

Title
Regulation of inflammation and protection against invasive pneumococcal infection by the long pentraxin PTX3
Author
Porte Rémi; Silva-Gomes, Rita; Theroude Charlotte; Parente Raffaella; Asgari Fatemeh; Sironi, Marina; Pasqualini Fabio; Valentino, Sonia; Asselta Rosanna; Recordati Camilla; Monari, Marta Noemi; Doni, Andrea; Inforzato Antonio; Rodriguez-Gallego, Carlos; Obando Ignacio; Colino Elena; Bottazzi, Barbara; Mantovani, Alberto
University/institution
U.S. National Institutes of Health/National Library of Medicine
Publication year
2023
Publication date
2023
Publisher
eLife Sciences Publications Ltd.
e-ISSN
2050084X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2831749407
Copyright
© 2023, Porte, Silva-Gomes et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.