It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Can we observe and control the quantum manifestations of an effective Hamiltonian in a superconducting circuit submitted to a fast-oscillating driving force?
We have implemented the effective Hamiltonian of a Kerr oscillator submitted to a squeezing drive in a Josephson tunnel junction-based quantum superconducting circuit submitted to a microwave sinusoidal driving excitation. We experimentally measure pairwise simultaneous degeneracies in the spectrum of this effective Hamiltonian, which models a quantum double well. What underlies these simultaneous degeneracies is the unusual destructive interference of tunnel paths in the classically forbidden region, an effect revealing a hidden symmetry of the system. Not only can these degeneracies be turned on-and-off on demand, but their number is tunable: when the detuning ∆ of the drive’s second subharmonic from the oscillator frequency equals an even multiple of the Kerr coefficient K, ∆/K = 2m, the oscillator experiences m+1 exact spectral degeneracies. Importantly, these degeneracies are robust as they are completely independent of the drive amplitude. They also lead to a drastic reduction of the incoherent well-switching rate leading to our realization of a super-protected cat qubit. Our work indicates the circumstances by which the control of parametric processes via the drive frequency can provide a practical new tool for quantum technologies. Underlying this experiment is a calculation tool to transform—beyond the rotating-wave approximation—a time-dependent Hamiltonian describing a superconducting nonlinear circuit submitted to a fast-oscillating driving force to a time-independent effective Hamiltonian governing the dynamics of our quantum double-well system.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer