Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The continuous path of a manipulator is often discretized into a series of independent action poses during path tracking, and the inverse kinematic solution of the manipulator’s poses is computationally challenging and yields inconsistent results. This research suggests a manipulator-route-tracking method employing deep-reinforcement-learning techniques to deal with this problem. The method of this paper takes an end-to-end-learning approach for closed-loop control and eliminates the process of obtaining the inverse answer by converting the path-tracking task into a sequence-decision issue. This paper first explores the feasibility of deep reinforcement learning in tracking the path of the manipulator. After verifying the feasibility, the path tracking of the multi-degree-of-freedom (multi-DOF) manipulator was performed by combining the maximum-entropy deep-reinforcement-learning algorithm. The experimental findings demonstrate that the approach performs well in manipulator-path tracking, avoids the need for an inverse kinematic solution and a dynamics model, and is capable of performing manipulator-tracking control in continuous space. As a result, this paper proposes that the method presented is of great significance for research on manipulator-path tracking.

Details

Title
A Research on Manipulator-Path Tracking Based on Deep Reinforcement Learning
Author
Zhang, Pengyu; Zhang, Jie; Kan, Jiangming
First page
7867
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2836313571
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.