Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the development in the field of energy and the growing demand for sustainable energy, gas–electric integrated energy systems are attracting attention as an emerging energy supply method. At the same time, with the deep application of information technology, the cyber–physical interactions of gas–electric integrated energy systems are increasingly enhanced. To this end, first, the reliability assessment indices of a gas–electric integrated energy system, which comprehensively considers the interactions between cyber–physical and different energy sources, are established in this paper to quantitatively assess the reliability level of the system under different fault and failure conditions. Second, to solve the reliability optimization problem, a comprehensive reliability enhancement optimization model is constructed in this paper, which targets the sum of the total penalties of the failure rate and average repair time modification. The impact of the cyber systems on the gas–electric integrated energy systems is transformed into a modification of the failure rate and the average repair time, and the model is solved by an adaptive Gaussian particle swarm optimization algorithm. Finally, the applicability and superiority of the adaptive Gaussian particle swarm optimization algorithm to the reliability optimization of the gas–electricity integrated energy system are verified by conducting simulation tests on the gas–electricity integrated energy system coupled with an 8-node distribution system and the 11-node natural gas system in Belgium. Furthermore, the effects of cyber systems and cyber-attacks on system reliability optimization are also analyzed to verify the effectiveness of the proposed method and the rationality of the newly defined reliability indices.

Details

Title
Reliability Optimization Method for Gas–Electric Integrated Energy Systems Considering Cyber–Physical Interactions
Author
Zhou, Buxiang 1 ; Cai, Yating 1 ; Zang, Tianlei 1   VIAFID ORCID Logo  ; Wu, Jiale 1 ; Li, Xuan 1 ; Shen, Dong 1 

 College of Electrical Engineering, Sichuan University, Chengdu 610065, China; Intelligent Electric Power Grid Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China 
First page
5187
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2836389966
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.