Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Artificial intelligence plays a significant role in traffic-accident detection. Traffic accidents involve a cascade of inadvertent events, making traditional detection approaches challenging. For instance, Convolutional Neural Network (CNN)-based approaches cannot analyze temporal relationships among objects, and Recurrent Neural Network (RNN)-based approaches suffer from low processing speeds and cannot detect traffic accidents simultaneously across multiple frames. Furthermore, these networks dismiss background interference in input video frames. This paper proposes a framework that begins by subtracting the background based on You Only Look Once (YOLOv5), which adaptively reduces background interference when detecting objects. Subsequently, the CNN encoder and Transformer decoder are combined into an end-to-end model to extract the spatial and temporal features between different time points, allowing for a parallel analysis between input video frames. The proposed framework was evaluated on the Car Crash Dataset through a series of comparison and ablation experiments. Our framework was benchmarked against three accident-detection models to evaluate its effectiveness, and the proposed framework demonstrated a superior accuracy of approximately 96%. The results of the ablation experiments indicate that when background subtraction was not incorporated into the proposed framework, the values of all evaluation indicators decreased by approximately 3%.

Details

Title
Traffic Accident Detection Using Background Subtraction and CNN Encoder–Transformer Decoder in Video Frames
Author
Zhang, Yihang 1 ; Sung, Yunsick 2   VIAFID ORCID Logo 

 Department of Autonomous Things Intelligence, Dongguk University-Seoul, Seoul 04620, Republic of Korea; [email protected] 
 Division of AI Software Convergence, Dongguk University-Seoul, Seoul 04620, Republic of Korea 
First page
2884
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2836422306
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.