Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The aim of this study was to create nanoparticles of human serum albumin immobilized with anti-TB drugs (rifampicin, isoniazid) using the desolvation method. Central Composite Design (CCD) was applied to study the effect of albumin, urea, L-cysteine, rifampicin and isoniazid concentration on particle size, polydispersity and loading degree of the drugs. The optimized nanoparticles were spherical in shape with an average particle size of 216.7 ± 3.7 nm and polydispersity of 0.286 ± 4.9. The loading degree of rifampicin and isoniazid in the optimized nanoparticles were 44% and 27%, respectively. The obtained nanoparticles were examined by Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC); the results showed the absence of drug–polymer interactions. The drug release from the polymer matrix was studied using dialysis membranes.

Details

Title
Human Serum Albumin Nanoparticles: Synthesis, Optimization and Immobilization with Antituberculosis Drugs
Author
Aldana Galiyeva  VIAFID ORCID Logo  ; Daribay, Arailym; Zhumagaliyeva, Tolkyn; Zhaparova, Lyazzat; Sadyrbekov, Daniyar; Tazhbayev, Yerkeblan
First page
2774
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2836432299
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.