It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This letter proposes a high-gain shared-aperture array for vehicular communications which integrates the hybrid zeroth-order-resonance (ZOR) patch and the higher-order metasurface antenna (MA). In terms of each array element, four hybrid ZOR patches with shorting pins form a metasurface which is fed by slot coupling. Different from some reported designs which have more high-frequency elements than low-frequency ones, the whole array is composed of 4
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Southwest Jiaotong University (SWJTU), Institute of Electromagnetics, Chengdu, China (GRID:grid.263901.f) (ISNI:0000 0004 1791 7667)
2 University of Electronic Science and Technology of China (UESTC), Institute of Applied Physics, Chengdu, China (GRID:grid.54549.39) (ISNI:0000 0004 0369 4060)