Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The rapid development of speech synthesis technology has significantly improved the naturalness and human-likeness of synthetic speech. As the technical barriers for speech synthesis are rapidly lowering, the number of illegal activities such as fraud and extortion is increasing, posing a significant threat to authentication systems, such as automatic speaker verification. This paper proposes an end-to-end speech synthesis detection model based on audio feature fusion in response to the constantly evolving synthesis techniques and to improve the accuracy of detecting synthetic speech. The model uses a pre-trained wav2vec2 model to extract features from raw waveforms and utilizes an audio feature fusion module for back-end classification. The audio feature fusion module aims to improve the model accuracy by adequately utilizing the audio features extracted from the front end and fusing the information from timeframes and feature dimensions. Data augmentation techniques are also used to enhance the performance generalization of the model. The model is trained on the training and development sets of the logical access (LA) dataset of the ASVspoof 2019 Challenge, an international standard, and is tested on the logical access (LA) and deep-fake (DF) evaluation datasets of the ASVspoof 2021 Challenge. The equal error rate (EER) on ASVspoof 2021 LA and ASVspoof 2021 DF are 1.18% and 2.62%, respectively, achieving the best results on the DF dataset.

Details

Title
Audio Anti-Spoofing Based on Audio Feature Fusion
Author
Zhang, Jiachen 1 ; Tu, Guoqing 1 ; Liu, Shubo 2 ; Cai, Zhaohui 2 

 Key Laboratory of Aerospace Information Security and Trusted Computing Ministry of Education, School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China 
 School of Computer Science, Wuhan University, Wuhan 430072, China 
First page
317
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19994893
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2842909550
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.