Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cellulase and xylanase have been widely studied for bioconversion processes and applied in various industries. The high cost of these enzymes remains to be the major bottleneck for large-scale commercial application of lignocellulosic biorefinery. The use of agroindustrial residues and weeds as fermentation substrates is an important strategy to increase cellulolytic enzymes production and reduce costs. Penicillium crustosum was newly isolated and selected to study its enzyme production during solid-state fermentation (SSF). Natural and pretreated water hyacinth (WH) biomass was used as support, substrate and inducer of cellulases and xylanases. Thermochemical pretreatments of WH biomass at 121 °C and sulfuric acid at three concentrations (0.2, 0.6 and 1 M) were assayed. The pretreatments of WH biomass released mono- and oligo-saccharides that favored fungal growth and enzymes production on SSF. WH is a cost-effective substrate-support and inducer, which to be used as a solid medium, was impregnated with a saline solution, containing only (NH4)2SO4, KH2PO4 y MgCl2. Maximum cellulases (carboxymethylcellulase (CMCase)) and xylanases productions of P. crustosum cultured on SSF were reached using the WH pretreated biomass with H2SO4 0.6 M and 121 °C. The simultaneous CMCase and xylanases production reached (647.51 and 4257.35 U/g dry WH, respectively) are among the highest values ever reported.

Details

Title
Cellulase and Xylanase Production by a Newly Isolated Penicillium crustosum Strain under Solid-State Fermentation, Using Water Hyacinth Biomass as Support, Substrate, and Inducer
Author
Espinoza-Abundis, César; Soltero-Sánchez, Carlos; Romero-Borbón, Evelyn; Córdova, Jesús  VIAFID ORCID Logo 
First page
660
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23115637
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2843050949
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.