Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, LixCa(1−x)Cu3Ti4O12 (LCCTO) solid solutions were successfully synthesized. XRD diagrams showed that dopant acceptor Li+ cations, in a concentration range of x = 0.01–0.10, were successfully merged into CCTO structure. It was found that doping with low concentrations of lithium (x < 0.05) inhibited grain growth during annealing; however, for x > 0.05, the grain growth process resumed. Permittivity and dielectric losses of obtained LCCTO ceramics were analyzed by the means of impedance spectroscopy in a frequency range from 10−1 to 106 Hz. It was revealed that acceptor doping with lithium at an appropriate concentration of x = 0.05 allowed to obtain ceramics with a permittivity level of ε′ = 3 × 104 and low dielectric losses tanδ < 0.1 at 1 kHz. Further addition of lithium in a concentration range of x = 0.075–0.10 led to a sharp decline in permittivity and an increase in dielectric losses. It was discovered that lithium addition to CCTO ceramics drastically decreased grain boundary resistivity from 115 MΩ·cm to 5–40 MΩ·cm at x = 0.01–0.10. Using Havriliak–Negami equation, the relaxation times for grain dipoles and grain boundary dipoles were found to be ranging from 0.8 × 10−6 to 1.7 × 10−6 s and from 0.4 × 10−4 to 7.1 × 10−4 s, respectively. The developed materials can be used in the manufacture of Multilayer Ceramic Capacitors (MLCC) as a dielectric.

Details

Title
The Effect of Lithium Doping on the Dielectric Properties of Solid Solutions LixCa(1−x)Cu3Ti4O12 (x = 0.01–0.1)
Author
Tsyganov, Alexey  VIAFID ORCID Logo  ; Morozova, Natalia  VIAFID ORCID Logo  ; Vikulova, Maria  VIAFID ORCID Logo  ; Asmolova, Aleksandra  VIAFID ORCID Logo  ; Artyukhov, Denis  VIAFID ORCID Logo  ; Zotov, Ilya  VIAFID ORCID Logo  ; Gorokhovsky, Alexander  VIAFID ORCID Logo  ; Gorshkov, Nikolay  VIAFID ORCID Logo 
First page
282
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
2504477X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2843072688
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.