Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The official establishment of China’s national parks marks a new stage in the construction of China’s ecological civilization system. National parks systematically protect the areas with the richest biodiversity and the most complete ecosystem processes in China. This is beneficial not only for China’s natural conservation work, but also for the world’s response to environmental issues, such as climate change. Based on remote sensing images of land use in the four periods 1990, 2000, 2010, and 2020, this study calculated the land use changes in each national park during the corresponding period. Using the Plus model LEAS module, the driving factors of land use change in the national parks were studied and explored. In addition, the study used the InVEST model carbon storage module, using remote sensing images from different periods and the corresponding carbon pools of each national park as the basic data for model operation, to obtain the carbon storage changes in each national park over the past 30 years. Based on the hotspot analysis function, the hotspot areas of carbon storage changes in the national parks in the past 30 years were determined. Consequently, based on the CARS module of the PLUS model, the carbon storage in Northeast Tiger and Leopard National Park in 2030 was estimated under different scenarios. Research suggested that, except for Sanjiangyuan National Park where grassland is the main land use type, the other four national parks are all dominated by forests, and the expansion and changes in the main land use types were due to human activities. In the past 30 years, the carbon storage in China’s national park ecosystem has mainly shown a trend of first increasing and then gradually decreasing. Based on the changes in carbon storage in the national park, restoration scenarios were simulated for the core protected and generally controlled areas of Northeast Tiger and Leopard National Park. Under the ideal scenario, the highest value of carbon storage would be achieved by 2030, which would be 7,468,250 t higher than that in 2020. The present study provides a reference for the regional management of China’s national parks and further confirms that the implementation of the national park system can enhance China’s ability to achieve carbon peaking and neutrality goals.

Details

Title
China’s National Park Construction Contributes to Carbon Peaking and Neutrality Goals
Author
Wang, Shaohan 1   VIAFID ORCID Logo  ; Song, Shuang 1   VIAFID ORCID Logo  ; Shi, Mengxi 1 ; Hu, Shanshan 1 ; Shuhan Xing 1 ; He, Bai 1 ; Xu, Dawei 1 

 College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China; [email protected] (S.W.); ; Key Lab for Garden Plant Germplasm Development & Landscape Eco-Restoration in Cold Regions of Heilongjiang Province, Harbin 150040, China 
First page
1402
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
2073445X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2843080775
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.