Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The resistive random-access memory (RRAM) with multi-level storage capability has been considered one of the most promising emerging devices to mimic synaptic behavior and accelerate analog computations. In this study, we investigated the reset-first bipolar resistive switching (RS) and multi-level characteristics of a LaNiO3−x thin film deposited using a reactive magnetron co-sputtering method. Polycrystalline phases of LaNiO3 (LNO), without La2O3 and NiO phases, were observed at similar fractions of Ni and La at a constant partial pressure of oxygen. The relative chemical proportions of Ni3+ and Ni2+ ions in LaNiO3−x indicated that it was an oxygen-deficient LaNiO3−x thin film, exhibiting RS behavior, compared to LNO without Ni2+ ions. The TiN/LaNiO3−x/Pt devices exhibited gradual resistance changes under various DC/AC voltage sweeps and consecutive pulse modes. The nonlinearity values of the conductance, measured via constant-pulse programming, were 0.15 for potentiation and 0.35 for depression, indicating the potential of the as-fabricated devices as analog computing devices. The LaNiO3−x-based device could reach multi-level states without an electroforming step and is a promising candidate for state-of-the-art RS memory and synaptic devices for neuromorphic computing.

Details

Title
Reset-First and Multibit-Level Resistive-Switching Behavior of Lanthanum Nickel Oxide (LaNiO3−x) Thin Films
Author
Kim, Daewoo; Lee, Jeongwoo; Kim, Jaeyeon; Sohn, Hyunchul
First page
4992
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2843081511
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.