Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, superhydrophobic ZnO/Polytetrafluoroethylene (ZnO/PTFE) films with water droplet contact angles (CA) observed as high as 165° and water droplet sliding angles of (SA) <1° have been prepared on glass substrates by RF magnetron sputtering. The PTFE was wrapped on a nano-rod made of a ZnO film with superhydrophobic properties while providing excellent UV resistance compared to hexadecyltrimethoxysilane (HDTMS) hydrophobic agents. The upper surface of the rough ZnO film was coated with PTFE, and most of the underlying coating was bare ZnO, which could well make contact with bacteria. For the Gram-negative strain, E. coli, the cell viability count of the ZnO/PTFE sample (3.5 log reduction, 99.96%) was conspicuously lower than that of the ZnO/HDTMS sample (1.2 log reduction, 93.87%) under 1 h illumination of UV light, which showed that the ZnO/PTFE sample has a better photocatalytic property than the ZnO/ HDTMS films. The ZnO/PTFE films also showed good mechanical robustness, which is an important consideration in their widespread real-world adoption.

Details

Title
Stable Superhydrophobic and Antimicrobial ZnO/Polytetrafluoroethylene Films via Radio Frequency (RF) Magnetron Sputtering
Author
Zhuang, Aoyun 1 ; Wu, Ke 2 ; Lu, Yao 3 ; Yu, Jianping 1   VIAFID ORCID Logo 

 Key Laboratory of Air-Driven Equipment Technology of Zhejiang Province, College of Mechanical Engineering, Quzhou University, Quzhou 324000, China; [email protected] 
 Department of Chemistry, University College London, 20 Gordon Street, London WC1E 0AJ, UK; [email protected] 
 Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; [email protected] 
First page
1292
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2843096413
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.