Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The critical points on the rail and road network are their intersections, i.e., level crossings. During a train crossing, car traffic is stopped. This reduces the fluidity of traffic on the road and, consequently, can cause congestion. The problem increases with the number of cars and trains. Frequently, due to national regulations, level crossing closure times are long. It is mainly dictated by safety issues. Building two-level intersections is not always a good solution, mainly because of the high cost of implementation. In the article, the authors proposed the use of sensors to reduce level crossing closure times and improve the Level of Service on the road network. The analyzed railroad lines are local agglomeration lines, mainly due to safety (low speed of commuter trains) and high impact on the road network. The sensors proposed in the article are based on radar/LIDAR. Formulas similar to HCM methods are proposed, which can be implemented in a railroad crossing controller. Simulations using the PTV Vissim program are carried out and the results are worked out based on the obtained data. The considered method can reduce the level crossing closure time by 68.6%, thereby increasing the Level of Service on roads near railroads.

Details

Title
A New Form of Train Detection as a Solution to Improve Level Crossing Closing Time
Author
Zawodny, Michał  VIAFID ORCID Logo  ; Kruszyna, Maciej  VIAFID ORCID Logo  ; Szczepanek, Wojciech Kazimierz  VIAFID ORCID Logo  ; Korzeń, Mariusz  VIAFID ORCID Logo 
First page
6619
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2843123018
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.