It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Transport network design problem (TNDP) is a well-studied problem for planning and operations of transportation systems. They are widely used to determine links for capacity enhancement, link closures to schedule maintenance, identify new road or transit links and more generally network enhancements under resource constraints. As changes in network capacities result in a redistribution of demand on the network, resulting in changes in the congestion patterns, TNDP is generally modelled as a bi-level problem, which is known to be NP-hard. Meta-heuristic methods, such as Tabu Search Method are relied upon to solve these problems, which have been demonstrated to achieve near optimality in reasonable time. The advent of quantum computing has afforded an opportunity to solve these problems faster. We formulate the TNDP problem as a bi-level problem, with the upper level formulated as a Quadratic Unconstrained Binary Optimization (QUBO) problem that is solved using quantum annealing on a D-Wave quantum computer. We compare the results with Tabu Search. We find that quantum annealing provides significant computational benefit. The proposed solution has implications for networks across different contexts including communications, traffic, industrial operations, electricity, water, broader supply chains and epidemiology.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 UNSW Sydney, School of Civil and Environmental Engineering, Sydney, Australia (GRID:grid.1005.4) (ISNI:0000 0004 4902 0432)