It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Knowing the behavior of solar energy is imperative for its use in photovoltaic systems; moreover, the number of weather stations is insufficient. This study presents a method for the integration of solar resource data: images and datasets. For this purpose, variables are extracted from images obtained from the GOES-13 satellite and integrated with variables obtained from meteorological stations. Subsequently, this data integration was used to train solar radiation prediction models in three different scenarios with data from 2012 and 2017. The predictive ability of five regression methods was evaluated, of which, neural networks had the highest performance in the scenario that integrates the meteorological variables and features obtained from the images. The analysis was performed using four evaluation metrics in each year. In the 2012 dataset, an R2of 0.88 and an RMSE of 90.99 were obtained. On the other hand, in the 2017 dataset, an R2of 0.92 and an RMSE of 40.97 were achieved. The model integrating data improves performance by up to 4% in R2 and up to 10 points less in the level of dispersion according to RMSE, with respect to models using separate data.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer






