Abstract

Topological surface-states can acquire an energy gap when time-reversal symmetry is broken by interfacing with a magnetic insulator. This gap has yet to be measured. Such topological-magnetic insulator heterostructures can host a quantized anomalous Hall effect and can allow the control of the magnetic state of the insulator in a spintronic device. In this work, we observe the energy gap of topological surface-states in proximity to a magnetic insulator using magnetooptical Landau level spectroscopy. We measure Pb1-xSnxSe–EuSe heterostructures grown by molecular beam epitaxy exhibiting a record mobility and low Fermi energy. Through temperature dependent measurements and theoretical calculations, we show this gap is likely due to quantum confinement and conclude that the magnetic proximity effect is weak in this system. This weakness is disadvantageous for the realization of the quantum anomalous Hall effect, but favorable for spintronic devices which require the preservation of spin-momentum locking at the Fermi level.

The proximity coupling of topological insulators with magnetic materials can give rise to exotic phenomenon such as the quantum anomalous Hall effect. Here, the authors use magneto-optical Landau level spectroscopy to investigate Pb1-xSnxSe-EuSe heterostructures finding evidence of a quantum confinement induced energy gaps in the topological surface states, that overshadow the magnetic proximity effects.

Details

Title
Energy gap of topological surface states in proximity to a magnetic insulator
Author
Wang, Jiashu 1   VIAFID ORCID Logo  ; Wang, Tianyi 1 ; Ozerov, Mykhaylo 2 ; Zhang, Zhan 3 ; Bermejo-Ortiz, Joaquin 4 ; Bac, Seul-Ki 1   VIAFID ORCID Logo  ; Trinh, Hoai 1 ; Zhukovskyi, Maksym 5 ; Orlova, Tatyana 5 ; Ambaye, Haile 6 ; Keum, Jong 7   VIAFID ORCID Logo  ; de Vaulchier, Louis-Anne 4 ; Guldner, Yves 4 ; Smirnov, Dmitry 2 ; Lauter, Valeria 6   VIAFID ORCID Logo  ; Liu, Xinyu 1   VIAFID ORCID Logo  ; Assaf, Badih A. 1   VIAFID ORCID Logo 

 University of Notre Dame, Department of Physics and Astronomy, Notre Dame, USA (GRID:grid.131063.6) (ISNI:0000 0001 2168 0066) 
 Florida State University, National High Magnetic Fields Laboratory, Tallahassee, USA (GRID:grid.255986.5) (ISNI:0000 0004 0472 0419) 
 Argonne National Lab, X-ray Science Division, Advanced Photon Source, Lemont, USA (GRID:grid.187073.a) (ISNI:0000 0001 1939 4845) 
 Université PSL, CNRS, Sorbonne Université, Laboratoire de Physique de l’Ecole normale supérieure, ENS, Paris, France (GRID:grid.462608.e) (ISNI:0000 0004 0384 7821) 
 University of Notre Dame, Notre Dame Integrated Imaging Facility, Notre Dame, USA (GRID:grid.131063.6) (ISNI:0000 0001 2168 0066) 
 Oak Ridge National Laboratory, Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge, USA (GRID:grid.135519.a) (ISNI:0000 0004 0446 2659) 
 Oak Ridge National Laboratory, Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge, USA (GRID:grid.135519.a) (ISNI:0000 0004 0446 2659); Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Physical Science Directorate, Oak Ridge, USA (GRID:grid.135519.a) (ISNI:0000 0004 0446 2659) 
Pages
200
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
23993650
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2846402410
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.