Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, we explore the integration of cascading and ensemble techniques in Deep Learning (DL) to improve prediction accuracy on diabetes data. The primary approach involves creating multiple Neural Networks (NNs), each predicting the outcome independently, and then feeding these initial predictions into another set of NN. Our exploration starts from an initial preliminary study and extends to various ensemble techniques including bagging, stacking, and finally cascading. The cascading ensemble involves training a second layer of models on the predictions of the first. This cascading structure, combined with ensemble voting for the final prediction, aims to exploit the strengths of multiple models while mitigating their individual weaknesses. Our results demonstrate significant improvement in prediction accuracy, providing a compelling case for the potential utility of these techniques in healthcare applications, specifically for prediction of diabetes where we achieve compelling model accuracy of 91.5% on the test set on a particular challenging dataset, where we compare thoroughly against many other methodologies.

Details

Title
Cascading and Ensemble Techniques in Deep Learning
Author
de Zarzà, I 1   VIAFID ORCID Logo  ; de Curtò, J 1   VIAFID ORCID Logo  ; Hernández-Orallo, Enrique 2   VIAFID ORCID Logo  ; Calafate, Carlos T 2   VIAFID ORCID Logo 

 Informatik und Mathematik, GOETHE-University Frankfurt, 60323 Frankfurt am Main, Germany; [email protected]; Departamento de Informática de Sistemas y Computadores, Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] (E.H.-O.); [email protected] (C.T.C.); Estudis d’Informàtica, Multimèdia i Telecomunicació, Universitat Oberta de Catalunya, 08018 Barcelona, Spain 
 Departamento de Informática de Sistemas y Computadores, Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] (E.H.-O.); [email protected] (C.T.C.) 
First page
3354
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2849024905
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.