It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Previous studies have found a correlation between coronavirus disease 2019 (COVID-19) and changes in brain structure and cognitive function, but it remains unclear whether COVID-19 causes brain structural changes and which specific brain regions are affected. Herein, we conducted a Mendelian randomization (MR) study to investigate this causal relationship and to identify specific brain regions vulnerable to COVID-19.
Methods
Genome-wide association study (GWAS) data for COVID-19 phenotypes (28,900 COVID-19 cases and 3,251,161 controls) were selected as exposures, and GWAS data for brain structural traits (cortical thickness and surface area from 51,665 participants and volume of subcortical structures from 30,717 participants) were selected as outcomes. Inverse-variance weighted method was used as the main estimate method. The weighted median, MR-Egger, MR-PRESSO global test, and Cochran’s Q statistic were used to detect heterogeneity and pleiotropy.
Results
The genetically predicted COVID-19 infection phenotype was nominally associated with reduced cortical thickness in the caudal middle frontal gyrus (β = − 0.0044, p = 0.0412). The hospitalized COVID-19 phenotype was nominally associated with reduced cortical thickness in the lateral orbitofrontal gyrus (β = − 0.0049, p = 0.0328) and rostral middle frontal gyrus (β = − 0.0022, p = 0.0032) as well as with reduced cortical surface area of the middle temporal gyrus (β = − 10.8855, p = 0.0266). These causal relationships were also identified in the severe COVID-19 phenotype. Additionally, the severe COVID-19 phenotype was nominally associated with reduced cortical thickness in the cuneus (β = − 0.0024, p = 0.0168); reduced cortical surface area of the pericalcarine (β = − 2.6628, p = 0.0492), superior parietal gyrus (β = − 5.6310, p = 0.0408), and parahippocampal gyrus (β = − 0.1473, p = 0.0297); and reduced volume in the hippocampus (β = − 15.9130, p = 0.0024).
Conclusions
Our study indicates a suggestively significant association between genetic predisposition to COVID-19 and atrophy in specific functional regions of the human brain. Patients with COVID-19 and cognitive impairment should be actively managed to alleviate neurocognitive symptoms and minimize long-term effects.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer