Abstract

Magnetization in a ferromagnetic layer could be manipulated by the spin-orbit torque whose generation commonly relies on the spin-orbit coupling from the adjacent heavy-metal layer within the bilayer. The fact that the magnetic topological insulator possesses both the ferromagnetic order with perpendicular anisotropy and inherent spin-orbit coupling inspires to realize such a torque-induced magnetization switching without forming any heterostructure with other materials. Here, only using a single layer of magnetically-doped topological insulator Cr:(Bi,Sb)2Te3, we realize a magnetization switching only by applying a large dc current. Assisted by the magnetic history, such a switching behaves nonvolatile under zero field but becomes volatile otherwise, as consistently shown by magnetoelectric transports and magneto-optical Kerr effect measurements. Static and quasistatic current are found to be equivalent for the switching. We propose that this switching may associate with the torque resulted from the spin-orbit coupling and the compositional asymmetry in the Cr-profile of the single layer.

Topological insulators (TIs), as a powerful reservoir of spin-orbit coupling, became popular to replace the heavy metals in bilayers to achieve magnetization switching with high efficiencies and low threshold current densities. By magnetically doping a single layer TI, the authors observe a zero-field magnetization of the TI that can be switched by dc current.

Details

Title
Nonvolatile magnetization switching in a single-layer magnetic topological insulator
Author
Sun, Huimin 1   VIAFID ORCID Logo  ; Liu, Yizhou 2 ; Huang, Daiqiang 3 ; Fu, Yu 1 ; Huang, Yu 1 ; He, Mengyun 1 ; Luo, Xuming 2 ; Song, Wenjie 4 ; Liu, Yang 3 ; Yu, Guoqiang 2   VIAFID ORCID Logo  ; He, Qing Lin 1   VIAFID ORCID Logo 

 Peking University, International Center for Quantum Materials, School of Physics, Beijing, China (GRID:grid.11135.37) (ISNI:0000 0001 2256 9319); Collaborative Innovation Center of Quantum Matter, Beijing, China (GRID:grid.495569.2); Peking University, Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Beijing, China (GRID:grid.11135.37) (ISNI:0000 0001 2256 9319) 
 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China (GRID:grid.458438.6) (ISNI:0000 0004 0605 6806) 
 Peking University, International Center for Quantum Materials, School of Physics, Beijing, China (GRID:grid.11135.37) (ISNI:0000 0001 2256 9319); Collaborative Innovation Center of Quantum Matter, Beijing, China (GRID:grid.495569.2) 
 Songshan Lake Materials Laboratory, Dongguan, China (GRID:grid.511002.7) 
Pages
222
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
23993650
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2854124443
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.