It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Magnetization in a ferromagnetic layer could be manipulated by the spin-orbit torque whose generation commonly relies on the spin-orbit coupling from the adjacent heavy-metal layer within the bilayer. The fact that the magnetic topological insulator possesses both the ferromagnetic order with perpendicular anisotropy and inherent spin-orbit coupling inspires to realize such a torque-induced magnetization switching without forming any heterostructure with other materials. Here, only using a single layer of magnetically-doped topological insulator Cr:(Bi,Sb)2Te3, we realize a magnetization switching only by applying a large dc current. Assisted by the magnetic history, such a switching behaves nonvolatile under zero field but becomes volatile otherwise, as consistently shown by magnetoelectric transports and magneto-optical Kerr effect measurements. Static and quasistatic current are found to be equivalent for the switching. We propose that this switching may associate with the torque resulted from the spin-orbit coupling and the compositional asymmetry in the Cr-profile of the single layer.
Topological insulators (TIs), as a powerful reservoir of spin-orbit coupling, became popular to replace the heavy metals in bilayers to achieve magnetization switching with high efficiencies and low threshold current densities. By magnetically doping a single layer TI, the authors observe a zero-field magnetization of the TI that can be switched by dc current.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
; Liu, Yizhou 2 ; Huang, Daiqiang 3 ; Fu, Yu 1 ; Huang, Yu 1 ; He, Mengyun 1 ; Luo, Xuming 2 ; Song, Wenjie 4 ; Liu, Yang 3 ; Yu, Guoqiang 2
; He, Qing Lin 1
1 Peking University, International Center for Quantum Materials, School of Physics, Beijing, China (GRID:grid.11135.37) (ISNI:0000 0001 2256 9319); Collaborative Innovation Center of Quantum Matter, Beijing, China (GRID:grid.495569.2); Peking University, Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Beijing, China (GRID:grid.11135.37) (ISNI:0000 0001 2256 9319)
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China (GRID:grid.458438.6) (ISNI:0000 0004 0605 6806)
3 Peking University, International Center for Quantum Materials, School of Physics, Beijing, China (GRID:grid.11135.37) (ISNI:0000 0001 2256 9319); Collaborative Innovation Center of Quantum Matter, Beijing, China (GRID:grid.495569.2)
4 Songshan Lake Materials Laboratory, Dongguan, China (GRID:grid.511002.7)




