Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Orchardgrass (Dactylis glomerata L.) is highly tolerant of shade, cold, and overwintering, making it an ideal species for grassland ecological restoration and livestock production. However, the genetic diversity of orchardgrass may be threatened by climate change. Using a Maximum Entropy (MaxEnt) model with the BCC-CSM2-MR global climate database and the Harmonized World Soil Database, we projected the current and future distribution of orchardgrass suitable areas globally. The predicted ecological thresholds for vital environmental factors were determined to be a temperature seasonality range of 411.50–1034.37 °C, a mean diurnal range of −0.88–10.69 °C, a maximum temperature of the warmest month of 22.21–35.45 °C, and precipitation of the coldest quarter of 116.56–825.40 mm. A range of AUC values from 0.914 to 0.922, indicating the accuracy of the prediction model. Our results indicate that the total area of current suitable habitats for orchardgrass was estimated to be 2133.01 × 104 km2, it is dispersed unevenly over six continents. Additionally, the suitable areas of habitats increased in higher latitudes while decreasing in lower latitudes as greenhouse gas emissions increased. Therefore, efforts should be made to save places in the southern hemisphere that are in danger of becoming unsuitable, with the possibility of using northern America, China, and Europe in the future for conservation and extensive farming.

Details

Title
Modeling Climate Change Indicates Potential Shifts in the Global Distribution of Orchardgrass
Author
Wu, Jiqiang 1 ; Yan, Lijun 2 ; Zhao, Junming 1 ; Peng, Jinghan 1 ; Xiong, Yi 1   VIAFID ORCID Logo  ; Xiong, Yanli 1 ; Ma, Xiao 1 

 College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; [email protected] (J.W.); [email protected] (J.Z.); [email protected] (J.P.); [email protected] (Y.X.); [email protected] (Y.X.) 
 Sichuan Academy of Grassland Sciences, Chengdu 611743, China; [email protected] 
First page
1985
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2856756380
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.