Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Li metal has emerged as a promising anode material for high energy density batteries, due to its low electrochemical potential and high specific capacity of 3860 mAh·g−1. These characteristics make it an attractive choice for electric vehicles and power grids. However, Li-metal batteries are plagued by dendrite issues stemming from the high reactivity of Li metal, which can ultimately result in battery failure or even safety concerns. To overcome this challenge, various strategies have been proposed to prevent dendrite formation and enhance the safety of Li-metal batteries. This review critically examines the recent progress in the development of dendrite-free Li-metal batteries, with a particular emphasis on advanced approaches of 3D Li metal host construction. Our goal is to provide a comprehensive overview of the 3D hosts for suppressing Li dendrites and to offer guidance for the future development of superior Li metal batteries.

Details

Title
Boosting the Performance of Lithium Metal Anodes with Three-Dimensional Lithium Hosts: Recent Progress and Future Perspectives
Author
Chen, Lina  VIAFID ORCID Logo  ; Liu, Haipeng; Li, Mengrui; Zhou, Shiqiang; Mo, Funian; Yu, Suzhu  VIAFID ORCID Logo  ; Wei, Jun
First page
391
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23130105
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2856769192
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.