Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Metal–organic frameworks (MOFs), constructed by coordination between metal-containing nodes and organic linkers, are widely used in various fields due to the advantages of tunable pores, diverse functional sites, stable structure, and multi-functionality. It should be noted that MOF-based materials play a major role in glucose detection, serving as a signal transducer or functional substrate for embedding nanoparticles/enzymes. Diabetes is one of the most common and fast-growing diseases worldwide, whose main clinical manifestation is high blood sugar levels. Therefore, accurate, sensitive, and point-of-care glucose detection is necessary. This review orderly introduces general synthetic strategies of MOF-based materials (pristine MOF, nanoparticles, or enzymes-modified MOF and MOF-derived materials) and detection methods (electrochemical and optical methods) for glucose detection. Then, the review refers to the novel MOF-based glucose detection devices (flexible wearable devices and microfluidic chips), which enable non-invasive continuous glucose monitoring or low-cost microscale detection. On the basis of describing the development of glucose sensors based on MOF materials in the past five years, the review presents merits, demerits, and possible improvements of various detection methods.

Details

Title
MOF-Based Materials for Glucose Detection
Author
Zhang, Yiling; Lin, Qian; Song, Yiteng; Huang, Jiaqi; Chen, Miaomiao; Ouyang, Runqi; Si-Yang, Liu  VIAFID ORCID Logo  ; Dai, Zong
First page
429
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22279040
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2856868085
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.