Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study investigated the effects of adding different concentrations of TP (tremella polysaccharide) on the water distribution, rheological, thermal, microstructure, and retrogradation properties of WS (wheat starch) gels. The results showed that the starch aging increased during storage, and the addition of TP reduced the rate of change of the elastic modulus of the starch gel and delayed the short-term aging of WS. In the same storage period, the hardness value of the gel decreased and the texture became softer with the increase in the mass fraction of TP. TP increased the T0 (starting temperature) of the system and decreased the enthalpy of retrogradation (ΔHr). No new groups were formed after the retrogradation of the compound system, the hydrogen bonding force increased with the increase in polysaccharide, and the relative crystallinity and the degree of ordering of the system decreased. The addition of TP increased the content of bound water and immobile water, decreased the content of free water, and increased the gel water-holding capacity, indicating that it could effectively inhibit the long-term retrogradation of WS. The findings provide new theoretical insights for the production of starch-based foods.

Details

Title
Tremella Polysaccharide Has Potential to Retard Wheat Starch Gel System Retrogradation and Mechanism Research
Author
Wang, Jiaxun 1 ; Zhang, Shanshan 1 ; Wang, Nan 1 ; Fan, Hongxiu 1 ; Wang, Hanmiao 1 ; Liu, Tingting 1 

 College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; [email protected] (J.W.); [email protected] (S.Z.); [email protected] (N.W.); [email protected] (H.F.); [email protected] (H.W.); Scientific Research Base of Edible Mushroom Processing Technology, Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China 
First page
3115
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23048158
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2857063530
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.