Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The food and beverage (FOODBEV) manufacturing industry is a significant contributor to global economic development, but it is also subject to major global competition. Manufacturing technology evolution is rapid and, with the Fourth Industrial Revolution (4IR), ever accelerating. Thus, the ability of companies to review and identify appropriate, beneficial technologies and forecast the skills required is a challenge. 4IR technologies, as a collection of tools to assist technological advancement in the manufacturing sector, are essential. The vast and diverse global technology knowledge base, together with the complexities associated with screening in technologies and the lack of appropriate enablement skills, makes technology selection and implementation a challenge. This challenge is premised on the knowledge that there are vast amounts of information available on various research databases and web search engines; however, the extraction of specific and relevant information is time-intensive. Whilst existing techniques such as conventional bibliometric analysis are available, there is a need for dynamic approaches that optimise the ability to acquire the relevant information or knowledge within a short period with minimum effort. This research study adopts smart knowledge management together with artificial intelligence (AI) for knowledge extraction, classification, and adoption. This research defines 18 FOODBEV manufacturing processes and adopts a two-tier Natural Language Processing (NLP) protocol to identify technological substitution for process optimisation and the associated skills required in the FOODBEV manufacturing sector in South Africa.

Details

Title
Industry 4.0 Technological Advancement in the Food and Beverage Manufacturing Industry in South Africa—Bibliometric Analysis via Natural Language Processing
Author
Telukdarie, Arnesh 1 ; Munsamy, Megashnee 1 ; Katsumbe, Tatenda H 1 ; Maphisa, Xolani 1 ; Philbin, Simon P 2   VIAFID ORCID Logo 

 Department of Digital Business, Johannesburg Business School, University of Johannesburg, Johannesburg 2092, South Africa; [email protected] (M.M.); [email protected] (T.H.K.); 
 Department of Engineering Management, School of Engineering, London South Bank University, London SE1 0AA, UK; [email protected] 
First page
454
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20782489
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2857077413
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.