Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Class 2 KNOX homeobox transcription factors (KNOX2) play a role in promoting cell differentiation in several plant developmental processes. In Arabidopsis, they antagonize the meristematic KNOX1 function during leaf development through the modulation of phytohormones. In Medicago truncatula, three KNOX2 genes belonging to the KNAT3/4/5-like subclass (Mt KNAT3/4/5-like or MtKNOX3-like) redundantly works upstream of a cytokinin-signaling module to control the symbiotic root nodule formation. Their possible role in the response to abiotic stress is as-of-yet unknown. We produced transgenic M. truncatula lines, in which the expression of four MtKNOX3-like genes was knocked down by RNA interference. When tested for response to water withdrawal in the soil, RNAi lines displayed a lower tolerance to drought conditions compared to the control lines, measured as increased leaf water loss, accelerated leaf wilting time, and faster chlorophyll loss. Reanalysis of a transcriptomic M. truncatula drought stress experiment via cluster analysis and gene co-expression networks pointed to a possible role of MtKNOX3-like transcription factors in repressing a proline dehydrogenase gene (MtPDH), specifically at 4 days after water withdrawal. Proline measurement and gene expression analysis of transgenic RNAi plants compared to the controls confirmed the role of KNOX3-like genes in inhibiting proline degradation through the regulation of the MtPDH gene.

Details

Title
A Novel Role of Medicago truncatula KNAT3/4/5-like Class 2 KNOX Transcription Factors in Drought Stress Tolerance
Author
Iannelli, Maria Adelaide 1 ; Nicolodi, Chiara 1 ; Coraggio, Immacolata 1 ; Fabriani, Marco 1 ; Baldoni, Elena 2   VIAFID ORCID Logo  ; Frugis, Giovanna 1   VIAFID ORCID Logo 

 National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Rome Unit, Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy; [email protected] (M.A.I.); [email protected] (C.N.); [email protected] (I.C.); [email protected] (M.F.) 
 National Research Council (CNR), Institute of Agricultural Biology and Biotechnology (IBBA), Via Alfonso Corti 12, 20133 Milan, Italy; [email protected] 
First page
12668
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2857083498
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.