Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study evaluated the behavior of three paint systems exposed to the Antarctic marine environment for 45 months compared to a control of uncoated carbon steel with a determined corrosion rate. At the study site, all environmental conditions, solar radiation, and the concentration of environmental pollutants (Cl and SO2) were evaluated. The paint systems differed in terms of the primer and top coat. Coated samples were studied before and after exposure. They were evaluated visually and using SEM to determine adhesion, abrasion, and contact angle; using the Evans X-Cut Tape Test; using ATR-FTIR spectroscopy to analyze the state of aging of the top layer; and using electrochemical impedance spectroscopy (EIS) for coat protection characterization. The corrosion rate obtained for steel was 85.64 µm year−1, which aligned with a C5 environmental corrosivity category. In general, the evaluation in the period studied showed the paint systems had good adhesion and resistance to delamination, without the presence of surface rust, and exhibited some loss of brightness, an increase in the abrasion index, and a decrease in the percentage of reflectance due to aging. EIS showed good protection capability of the three coating schemes. In general, this type of paint system has not previously been evaluated in an extreme environment after 45 months of exposure to the environment. The results showed that the best behavior was found for the system whose top layer was acrylic–aliphatic polyurethane.

Details

Title
Performance of Anticorrosive Paint Systems for Carbon Steel in the Antarctic Marine Environment
Author
Rosa, Vera 1 ; Bagnara, Margarita 1 ; Henríquez, Rodrigo 1   VIAFID ORCID Logo  ; Muñoz, Lisa 1   VIAFID ORCID Logo  ; Rojas, Paula 2   VIAFID ORCID Logo  ; Díaz-Gómez, Andrés 1   VIAFID ORCID Logo 

 Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Placilla (Curauma), Valparaíso 2373223, Chile; [email protected] (M.B.); [email protected] (R.H.); [email protected] (L.M.) 
 Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Diagonal Las Torres 2640, Santiago 7941169, Chile; [email protected] 
First page
5713
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2857403658
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.