Content area

Abstract

Model order reduction provides low-complexity high-fidelity surrogate models that allow rapid and accurate solutions of parametric differential equations. The development of reduced order models for parametric \emph{nonlinear} Hamiltonian systems is challenged by several factors: (i) the geometric structure encoding the physical properties of the dynamics; (ii) the slowly decaying Kolmogorov \(n\)-width of conservative dynamics; (iii) the gradient structure of the nonlinear flow velocity; (iv) high variations in the numerical rank of the state as a function of time and parameters. We propose to address these aspects via a structure-preserving adaptive approach that combines symplectic dynamical low-rank approximation with adaptive gradient-preserving hyper-reduction and parameters sampling. Additionally, we propose to vary in time the dimensions of both the reduced basis space and the hyper-reduction space by monitoring the quality of the reduced solution via an error indicator related to the projection error of the Hamiltonian vector field. The resulting adaptive hyper-reduced models preserve the geometric structure of the Hamiltonian flow, do not rely on prior information on the dynamics, and can be solved at a cost that is linear in the dimension of the full order model and linear in the number of test parameters. Numerical experiments demonstrate the improved performances of the fully adaptive models compared to the original and reduced models.

Details

1009240
Identifier / keyword
Title
Fully adaptive structure-preserving hyper-reduction of parametric Hamiltonian systems
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Sep 27, 2024
Section
Computer Science; Mathematics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-09-30
Milestone dates
2023-08-31 (Submission v1); 2023-09-12 (Submission v2); 2024-09-27 (Submission v3)
Publication history
 
 
   First posting date
30 Sep 2024
ProQuest document ID
2859742925
Document URL
https://www.proquest.com/working-papers/fully-adaptive-structure-preserving-hyper/docview/2859742925/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-10-01
Database
ProQuest One Academic